Body orientation contributes to modelling the effects of gravity for target interception in humans.


Journal

The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262

Informations de publication

Date de publication:
04 2019
Historique:
received: 20 11 2018
accepted: 09 01 2019
pubmed: 16 1 2019
medline: 18 7 2020
entrez: 16 1 2019
Statut: ppublish

Résumé

It is known that interception of targets accelerated by gravity involves internal models coupled with visual signals. Non-visual signals related to head and body orientation relative to gravity may also contribute, although their role is poorly understood. In a novel experiment, we asked pitched observers to hit a virtual target approaching with an acceleration that was either coherent or incoherent with their pitch-tilt. Initially, the timing errors were large and independent of the coherence between target acceleration and observer's pitch. With practice, however, the timing errors became substantially smaller in the coherent conditions. The results show that information about head and body orientation can contribute to modelling the effects of gravity on a moving target. Orientation cues from vestibular and somatosensory signals might be integrated with visual signals in the vestibular cortex, where the internal model of gravity is assumed to be encoded. Interception of moving targets relies on visual signals and internal models. Less is known about the additional contribution of non-visual cues about head and body orientation relative to gravity. We took advantage of Galileo's law of motion along an incline to demonstrate the effects of vestibular and somatosensory cues about head and body orientation on interception timing. Participants were asked to hit a ball rolling in a gutter towards the eyes, resulting in image expansion. The scene was presented in a head-mounted display, without any visual information about gravity direction. In separate blocks of trials participants were pitched backwards by 20° or 60°, whereas ball acceleration was randomized across trials so as to be compatible with rolling down a slope of 20° or 60°. Initially, the timing errors were large, independently of the coherence between ball acceleration and pitch angle, consistent with responses based exclusively on visual information because visual stimuli were identical at both tilts. At the end of the experiment, however, the timing errors were systematically smaller in the coherent conditions than the incoherent ones. Moreover, the responses were significantly (P = 0.007) earlier when participants were pitched by 60° than when they were pitched by 20°. Therefore, practice with the task led to incorporation of information about head and body orientation relative to gravity for response timing. Instead, posture did not affect response timing in a control experiment in which participants hit a static target in synchrony with the last of a predictable series of stationary audiovisual stimuli.

Identifiants

pubmed: 30644996
doi: 10.1113/JP277469
pmc: PMC6441887
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2021-2043

Informations de copyright

© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.

Références

Nature. 1999 Apr 15;398(6728):615-8
pubmed: 10217143
Nat Neurosci. 1999 May;2(5):396-8
pubmed: 10321239
J Neurophysiol. 2000 Jun;83(6):3483-96
pubmed: 10848564
Nat Neurosci. 2001 May;4(5):526-32
pubmed: 11319562
Nat Neurosci. 2001 Jul;4(7):693-4
pubmed: 11426224
Exp Brain Res. 2002 Jan;142(2):193-207
pubmed: 11807574
Percept Psychophys. 2002 Oct;64(7):1160-8
pubmed: 12489669
Neural Netw. 1998 Oct;11(7-8):1317-29
pubmed: 12662752
J Exp Psychol Hum Percept Perform. 2003 Feb;29(1):219-37
pubmed: 12669759
Vision Res. 1992 Dec;32(12):2313-29
pubmed: 1288008
Aerosp Med. 1964 Aug;35:764-72
pubmed: 14215796
J Neurophysiol. 2004 Apr;91(4):1620-34
pubmed: 14627663
Exp Brain Res. 2004 Apr;155(3):385-92
pubmed: 14663543
J Neurophysiol. 2004 May;91(5):2205-14
pubmed: 14668294
Nature. 2004 Jul 29;430(6999):560-4
pubmed: 15282606
Science. 2005 Apr 15;308(5720):416-9
pubmed: 15831760
J Neurophysiol. 2005 Aug;94(2):1432-42
pubmed: 15857971
Ann N Y Acad Sci. 1992 May 22;656:847-9
pubmed: 1599198
Curr Biol. 2005 Aug 9;15(15):R583-6
pubmed: 16085475
J Neurophysiol. 2005 Dec;94(6):4471-80
pubmed: 16120661
Exp Brain Res. 2006 Sep;173(4):612-22
pubmed: 16550392
Exp Brain Res. 2006 Aug;173(3):364-73
pubmed: 16628401
Exp Brain Res. 2007 May;179(2):263-90
pubmed: 17136526
Neuroscience. 2007 Mar 2;145(1):20-32
pubmed: 17224242
Neurosci Lett. 2007 Aug 23;423(3):211-5
pubmed: 17709199
J Neurophysiol. 2008 Apr;99(4):1969-82
pubmed: 18057110
J Neurophysiol. 2008 Feb;99(2):915-30
pubmed: 18094098
J Neurosci. 2008 Nov 12;28(46):12071-84
pubmed: 19005072
J Physiol. 2009 Jan 15;587(2):429-42
pubmed: 19047203
J Neurophysiol. 2009 Mar;101(3):1321-33
pubmed: 19118112
Exp Brain Res. 2009 Feb;192(4):571-604
pubmed: 19139857
J Neurophysiol. 2009 Sep;102(3):1657-71
pubmed: 19571203
J Mem Lang. 2008 Nov;59(4):434-446
pubmed: 19884961
J Neurophysiol. 2010 Jan;103(1):360-70
pubmed: 19889846
Exp Brain Res. 2010 Apr;201(4):653-62
pubmed: 20024651
Brain Res Rev. 2011 Jun 24;67(1-2):119-46
pubmed: 21223979
J Neurosci. 2011 Feb 23;31(8):3082-94
pubmed: 21414929
J Vis. 2011 Apr 08;11(4):null
pubmed: 21478379
J Vis. 2011 Sep 20;11(10):13
pubmed: 21933933
Perception. 2011;40(6):674-81
pubmed: 21936296
J Neurophysiol. 2012 Feb;107(3):766-71
pubmed: 22090456
Exp Brain Res. 2012 Mar;217(2):163-73
pubmed: 22205232
J Neurosci. 2012 Feb 8;32(6):1969-73
pubmed: 22323710
J Vis. 2012 Oct 25;12(11):null
pubmed: 23104819
PLoS One. 2012;7(11):e49381
pubmed: 23166653
Neuroimage. 2013 May 1;71:114-24
pubmed: 23321153
Exp Brain Res. 2013 Apr;226(1):95-106
pubmed: 23397113
Psychol Rev. 2013 Apr;120(2):411-37
pubmed: 23458084
J Mot Behav. 2013;45(4):325-32
pubmed: 23819650
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18327-32
pubmed: 24145417
Neuron. 2013 Dec 18;80(6):1508-18
pubmed: 24360549
Front Integr Neurosci. 2013 Dec 26;7:101
pubmed: 24421761
PLoS One. 2014 Mar 25;9(3):e93020
pubmed: 24667578
PLoS One. 2014 Jun 12;9(6):e99866
pubmed: 24925371
PLoS One. 2014 Jun 18;9(6):e99837
pubmed: 24940874
Neuroimage. 2015 Jan 1;104:221-30
pubmed: 25315789
Nature. 2015 Jan 15;517(7534):333-8
pubmed: 25487153
J Vis. 2015 Mar 12;15(3):null
pubmed: 25767094
Exp Brain Res. 2015 Aug;233(8):2365-71
pubmed: 26003125
J Neurophysiol. 2015 Sep;114(3):1577-92
pubmed: 26133803
J Neurophysiol. 2015 Nov;114(5):2983-90
pubmed: 26400254
Multisens Res. 2015;28(5-6):397-426
pubmed: 26595949
Cortex. 2016 May;78:55-69
pubmed: 27007069
J Neurophysiol. 2016 Jul 1;116(1):30-40
pubmed: 27075537
Front Hum Neurosci. 2016 Apr 28;10:181
pubmed: 27199704
Cereb Cortex. 2016 Aug;26(8):3591-3610
pubmed: 27252350
Brain Cogn. 2016 Jul;106:72-7
pubmed: 27258411
Percept Psychophys. 1989 May;45(5):391-4
pubmed: 2726400
Iperception. 2016 Jan 27;7(1):2041669515624317
pubmed: 27482367
J Neurophysiol. 2016 Oct 1;116(4):1603-1614
pubmed: 27486109
Cognition. 2016 Dec;157:61-76
pubmed: 27592412
Nat Neurosci. 2016 Dec;19(12):1566-1568
pubmed: 27775722
Elife. 2016 Nov 02;5:
pubmed: 27805566
Front Hum Neurosci. 2017 Apr 28;11:203
pubmed: 28503140
J Neurophysiol. 2017 Sep 1;118(3):1809-1823
pubmed: 28701531
J Neurophysiol. 2017 Oct 1;118(4):2421-2434
pubmed: 28768737
Front Neurol. 2017 Oct 25;8:552
pubmed: 29118736
J Neurosci. 1989 Jan;9(1):149-59
pubmed: 2913201
Nat Commun. 2018 Mar 15;9(1):1099
pubmed: 29545572
J Neurophysiol. 2018 Jul 1;120(1):162-170
pubmed: 29589810
Front Neurosci. 2018 Jun 22;12:406
pubmed: 29988401
Exp Brain Res. 1988;71(1):116-28
pubmed: 3416946
J Exp Psychol. 1970 Jan;83(1):1-6
pubmed: 5436480
Naturwissenschaften. 1983 Jun;70(6):272-81
pubmed: 6877388
J Neurophysiol. 1976 Sep;39(5):970-84
pubmed: 824412
Exp Brain Res. 1997 Oct;116(3):406-20
pubmed: 9372290
Exp Brain Res. 1998 May;120(2):233-42
pubmed: 9629965
J Neurosci. 1999 Jan 1;19(1):316-27
pubmed: 9870961

Auteurs

Barbara La Scaleia (B)

Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.

Francesco Lacquaniti (F)

Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.
Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.

Myrka Zago (M)

Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.
Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Rome, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH