Cell-surface HSP70 associates with thrombomodulin in endothelial cells.
Atherosclerosis
Cell stress
Endothelial cells
HSP70
Shear stress
Thrombomodulin
Journal
Cell stress & chaperones
ISSN: 1466-1268
Titre abrégé: Cell Stress Chaperones
Pays: Netherlands
ID NLM: 9610925
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
26
04
2018
accepted:
14
12
2018
revised:
26
04
2018
pubmed:
16
1
2019
medline:
18
6
2019
entrez:
16
1
2019
Statut:
ppublish
Résumé
Heat shock protein-70 (HSP70) is crucial for proteostasis and displays cell-protective effects. Meanwhile, enhanced levels of cell-surface (cs) and secreted HSP70 paradoxically associate with pathologic cardiovascular conditions. However, mechanisms regulating csHSP70 pool are unknown. We hypothesized that total and csHSP70 expressions are modulated by hemodynamic forces, major contributors to endothelial pathophysiology. We also investigated whether thrombomodulin, a crucial thromboresistance cell-surface protein, is a csHSP70 target. We used proteomic/western analysis, confocal microscopy, and cs-biotinylation to analyze the pattern and specific characteristics of intracellular and csHSP70. HSP70 interaction with thrombomodulin was investigated by confocal colocalization, en face immunofluorescence, proximity assay, and immunoprecipitation. Thrombomodulin activity was assessed by measured protein C activation two-step assay. Our results show that csHSP70 pool in endothelial cells (EC) exhibits a peculiar cluster-like pattern and undergoes enhanced expression by physiological arterial-level laminar shear stress. Conversely, total and csHSP70 expressions were diminished under low shear stress, a known proatherogenic hemodynamic pattern. Furthermore, total HSP70 levels were decreased in aortic arch (associated with proatherogenic turbulent flow) compared with thoracic aorta (associated with atheroprotective laminar flow). Importantly, csHSP70 co-localized with thrombomodulin in cultured EC and aorta endothelium; proximity ligation assays and immunoprecipitation confirmed their physical interaction in EC. Remarkably, immunoneutralization of csHSP70 enhanced thrombomodulin activity in EC and aorta ex vivo. Overall, proatherogenic hemodynamic forces promote reduced total HSP70 expression, which might implicate in disturbed proteostasis; meanwhile, the associated decrease in cs-HSP70 pool associates with thromboresistance signaling. Cell-surface HSP70 (csHSP70) expression regulation and csHSP70 targets in vascular cells are unknown. We showed that HSP70 levels are shear stress-modulated and decreased under proatherogenic conditions. Remarkably, csHSP70 binds thrombomodulin and inhibits its activity in endothelial cells. This mechanism can potentially explain some deleterious effects previously associated with high extracellular HSP70 levels, as csHSP70 potentially could restrict thromboresistance and support thrombosis/inflammation in stress situations.
Identifiants
pubmed: 30645756
doi: 10.1007/s12192-018-00964-y
pii: 10.1007/s12192-018-00964-y
pmc: PMC6363626
doi:
Substances chimiques
HSP70 Heat-Shock Proteins
0
Thrombomodulin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
273-282Références
Allende M, Molina E, Guruceaga E, Tamayo I, González-Porras JR, Gonzalez-López TJ, Toledo E, Rabal O, Ugarte A, Roldán V, Rivera J, Oyarzabal J, Montes R, Hermida J (2016) Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis without increased bleeding risk. Cardiovasc Res 110(3):309–318. https://doi.org/10.1093/cvr/cvw049
doi: 10.1093/cvr/cvw049
pubmed: 26976620
Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT (2011) Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 9(9):1795–1803. https://doi.org/10.1111/j.1538-7836.2011.04422.x
doi: 10.1111/j.1538-7836.2011.04422.x
pubmed: 21711444
Araujo TL, Zeidler JD, Oliveira PV, Dias MH, Armelin HA, Laurindo FR (2016) Protein disulfide isomerase externalization in endothelial cells follows classical and unconventional routes. Free Radic Biol Med 103:199–208. https://doi.org/10.1016/j.freeradbiomed.2016.12.021
doi: 10.1016/j.freeradbiomed.2016.12.021
pubmed: 28034831
Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442. https://doi.org/10.1038/74697
doi: 10.1038/74697
pubmed: 10742151
Bobkova NV, Evgen’ev M, Garbuz DG, Kulikov AM, Morozov A, Samokhin A et al (2015) Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc Natl Acad Sci U S A 112(52):16006–16011. https://doi.org/10.1073/pnas.1516131112
doi: 10.1073/pnas.1516131112
pubmed: 26668376
pmcid: 4702952
Borges JC, Ramos CH (2005) Protein folding assisted by chaperones. Protein Pept Lett 12(3):257–261
doi: 10.2174/0929866053587165
Calderwood SK, Mambula SS, Gray PJ, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581(19):3689–3694. https://doi.org/10.1016/j.febslet.2007.04.044
doi: 10.1016/j.febslet.2007.04.044
pubmed: 17499247
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511
doi: 10.1038/nbt.1511
pubmed: 19029910
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j
doi: 10.1021/pr101065j
pubmed: 21254760
De Maio A, Santoro MG, Tanguay RM, Hightower LE (2012) Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: a new view of biology, a new society, and a new journal. Cell Stress Chaperones 17(2):139–143. https://doi.org/10.1007/s12192-012-0320-z
doi: 10.1007/s12192-012-0320-z
pubmed: 22252402
pmcid: 3273555
Essex DW, Wu Y (2018) Multiple protein disulfide isomerases support thrombosis. Curr Opin Hematol 25(5):395–402. https://doi.org/10.1097/MOH.0000000000000449.
doi: 10.1097/MOH.0000000000000449.
pubmed: 29994898
pmcid: 6690345
Fernandez-Funez P, Sanchez-Garcia J, de Mena L, Zhang Y, Levites Y, Khare S, Golde TE, Rincon-Limas DE (2016) Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in Drosophila. Proc Natl Acad Sci U S A 113(35):E5212–E5221. https://doi.org/10.1073/pnas.1608045113
doi: 10.1073/pnas.1608045113
pubmed: 27531960
pmcid: 5024614
Flaumenhaft R, Furie B (2016) Vascular thiol isomerases. Blood 128(7):893–901. https://doi.org/10.1182/blood-2016-04-636456
doi: 10.1182/blood-2016-04-636456
pubmed: 27357699
pmcid: 4990854
Fong JJ, Sreedhara K, Deng L, Varki NM, Angata T, Liu Q, Nizet V, Varki A (2015) Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J 34(22):2775–2788. https://doi.org/10.15252/embj.201591407
doi: 10.15252/embj.201591407
pubmed: 26459514
pmcid: 4682649
Gutiérrez M, Isa P, Sánchez-San Martin C, Pérez-Vargas J, Espinosa R, Arias CF et al (2010) Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol 84(18):9161–9169. https://doi.org/10.1128/JVI.00731-10
doi: 10.1128/JVI.00731-10
pubmed: 20631149
pmcid: 2937648
Henderson B, Pockley AG (2012) Proteotoxic stress and circulating cell stress proteins in the cardiovascular diseases. Cell Stress Chaperones 17(3):303–311. https://doi.org/10.1007/s12192-011-0318-y
doi: 10.1007/s12192-011-0318-y
pubmed: 22215517
pmcid: 3312955
Jang J, Kim MR, Kim TK, Lee WR, Kim JH, Heo K, Lee S (2017) CLEC14a-HSP70-1A interaction regulates HSP70-1A-induced angiogenesis. Sci Rep 7(1):10666. https://doi.org/10.1038/s41598-017-11118-y.
doi: 10.1038/s41598-017-11118-y.
pubmed: 28878328
pmcid: 5587741
Jenei ZM, Gombos T, Förhécz Z, Pozsonyi Z, Karádi I, Jánoskuti L, Prohászka Z (2013) Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress Chaperones 18(6):809–813. https://doi.org/10.1007/s12192-013-0425-z
doi: 10.1007/s12192-013-0425-z
pubmed: 23564583
pmcid: 3789876
Kim TK, Na HJ, Lee WR, Jeoung MH, Lee S (2016) Heat shock protein 70-1A is a novel angiogenic regulator. Biochem Biophys Res Commun 469(2):222–228. https://doi.org/10.1016/j.bbrc.2015.11.125
doi: 10.1016/j.bbrc.2015.11.125
pubmed: 26657847
Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R, Homem de Bittencourt PI (2015) The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediat Inflamm 2015:249205. https://doi.org/10.1155/2015/249205
doi: 10.1155/2015/249205
Krepuska M, Szeberin Z, Sótonyi P, Sarkadi H, Fehérvári M, Apor A, Rimely E, Prohászka Z, Acsády G (2011) Serum level of soluble Hsp70 is associated with vascular calcification. Cell Stress Chaperones 16(3):257–265. https://doi.org/10.1007/s12192-010-0237-3
doi: 10.1007/s12192-010-0237-3
pubmed: 21046302
Leng X, Wang X, Pang W, Zhan R, Zhang Z, Wang L, Gao X, Qian L (2013) Evidence of a role for both anti-Hsp70 antibody and endothelial surface membrane Hsp70 in atherosclerosis. Cell Stress Chaperones 18(4):483–493. https://doi.org/10.1007/s12192-013-0404-4
doi: 10.1007/s12192-013-0404-4
pubmed: 23334859
pmcid: 3682019
Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958. https://doi.org/10.1038/nrm2067
doi: 10.1038/nrm2067
pubmed: 17139335
Martin FA, Murphy RP, Cummins PM (2013) Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol 304(12):H1585–H1597. https://doi.org/10.1152/ajpheart.00096.2013
doi: 10.1152/ajpheart.00096.2013
pubmed: 23604713
pmcid: 7212260
Mayer MP (2018) Intra-molecular pathways of allosteric control in Hsp70s. Philos Trans R Soc Lond Ser B Biol Sci 373(1749):20170183. https://doi.org/10.1098/rstb.2017.0183
doi: 10.1098/rstb.2017.0183
Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684. https://doi.org/10.1007/s00018-004-4464-6
doi: 10.1007/s00018-004-4464-6
pubmed: 15770419
pmcid: 2773841
Moraes MS, Costa PE, Batista WL, Paschoalin T, Curcio MF, Borges RE, Taha MO, Fonseca FV, Stern A, Monteiro HP (2014) Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis. Arch Biochem Biophys 558:14–27. https://doi.org/10.1016/j.abb.2014.06.011
doi: 10.1016/j.abb.2014.06.011
pubmed: 24960080
Murshid A, Theriault J, Gong J, Calderwood SK (2011) Investigating receptors for extracellular heat shock proteins. Methods Mol Biol 787:289–302. https://doi.org/10.1007/978-1-61779-295-3_22
doi: 10.1007/978-1-61779-295-3_22
pubmed: 21898244
pmcid: 3905792
Nigro P, Abe J, Berk BC (2011) Flow shear stress and atherosclerosis: a matter of site specificity. Antioxid Redox Signal 15(5):1405–1414. https://doi.org/10.1089/ars.2010.3679
doi: 10.1089/ars.2010.3679
pubmed: 21050140
pmcid: 3144425
Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660. https://doi.org/10.1038/nprot.2006.427.
doi: 10.1038/nprot.2006.427.
pubmed: 17406521
Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105(8):1012–1017
doi: 10.1161/hc0802.103729
Pockley AG, Shepherd J, Corton JM (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Investig 27(6):367–377
doi: 10.3109/08820139809022710
Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol 14(4):237–248. https://doi.org/10.1038/nrm3542
doi: 10.1038/nrm3542
pubmed: 23463216
pmcid: 3718298
Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21(3):379–404. https://doi.org/10.1007/s12192-016-0676-6
doi: 10.1007/s12192-016-0676-6
pubmed: 26865365
pmcid: 4837186
Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18(3):345–351. https://doi.org/10.1038/nsmb.2006
doi: 10.1038/nsmb.2006
pubmed: 21278757
Shiota M, Kusakabe H, Izumi Y, Hikita Y, Nakao T, Funae Y, Miura K, Iwao H (2010) Heat shock cognate protein 70 is essential for Akt signaling in endothelial function. Arterioscler Thromb Vasc Biol 30(3):491–497. https://doi.org/10.1161/ATVBAHA.109.193631
doi: 10.1161/ATVBAHA.109.193631
pubmed: 20018937
Shrestha L, Patel HJ, Chiosis G (2016) Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell Chem Biol 23(1):158–172. https://doi.org/10.1016/j.chembiol.2015.12.006
doi: 10.1016/j.chembiol.2015.12.006
pubmed: 26933742
pmcid: 4779498
Smith CL, Shah CM, Kamaludin N, Gordge MP (2015) Inhibition of thiol isomerase activity diminishes endothelial activation of plasminogen, but not of protein C. Thromb Res 135(4):748–753. https://doi.org/10.1016/j.thromres.2015.01.034
doi: 10.1016/j.thromres.2015.01.034
pubmed: 25700620
Soares Moretti AI, Martins Laurindo FR (2016) Protein disulfide isomerases: redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 617:106–119. https://doi.org/10.1016/j.abb.2016.11.007
doi: 10.1016/j.abb.2016.11.007
pubmed: 27889386
Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3(12):995–1000. https://doi.org/10.1038/nmeth947
doi: 10.1038/nmeth947
pubmed: 17072308
Sperry JL, Deming CB, Bian C, Walinsky PL, Kass DA, Kolodgie FD, Virmani R, Kim AY, Rade JJ (2003) Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ Res 92(1):41–47
doi: 10.1161/01.RES.0000048196.11060.A0
Takemoto H, Yoshimori T, Yamamoto A, Miyata Y, Yahara I, Inoue K, Tashiro Y (1992) Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch Biochem Biophys 296(1):129–136
doi: 10.1016/0003-9861(92)90554-A
Tanaka LY, Araújo HA, Hironaka GK, Araujo TL, Takimura CK, Rodriguez AI et al (2016) Peri/epicellular protein disulfide isomerase sustains vascular lumen caliber through an anticonstrictive remodeling effect. Hypertension 67(3):613–622. https://doi.org/10.1161/HYPERTENSIONAHA.115.06177
doi: 10.1161/HYPERTENSIONAHA.115.06177
pubmed: 26781284
Thériault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579(9):1951–1960. https://doi.org/10.1016/j.febslet.2005.02.046
doi: 10.1016/j.febslet.2005.02.046
pubmed: 15792802
Uchiyama T, Atsuta H, Utsugi T, Oguri M, Hasegawa A, Nakamura T, Nakai A, Nakata M, Maruyama I, Tomura H, Okajima F, Tomono S, Kawazu S, Nagai R, Kurabayashi M (2007) HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis 190(2):321–329. https://doi.org/10.1016/j.atherosclerosis.2006.03.037
doi: 10.1016/j.atherosclerosis.2006.03.037
pubmed: 16678833
Vanhoutte PM, Zhao Y, Xu A, Leung SW (2016) Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res 119(2):375–396. https://doi.org/10.1161/CIRCRESAHA.116.306531
doi: 10.1161/CIRCRESAHA.116.306531
pubmed: 27390338
Wang XL, Fu A, Raghavakaimal S, Lee HC (2007) Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomics 7(4):588–596. https://doi.org/10.1002/pmic.200600568
doi: 10.1002/pmic.200600568
pubmed: 17309104
White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJ, Newby AC (2011) Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol 226(11):2841–2848. https://doi.org/10.1002/jcp.22629
doi: 10.1002/jcp.22629
pubmed: 21302282
pmcid: 3412226
Wiest DL, Bhandoola A, Punt J, Kreibich G, McKean D, Singer A (1997) Incomplete endoplasmic reticulum (ER) retention in immature thymocytes as revealed by surface expression of “ER-resident” molecular chaperones. Proc Natl Acad Sci U S A 94(5):1884–1889
doi: 10.1073/pnas.94.5.1884
Willems SH, Tape CJ, Stanley PL, Taylor NA, Mills IG, Neal DE, McCafferty J, Murphy G (2010) Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem J 428(3):439–450. https://doi.org/10.1042/BJ20100179
doi: 10.1042/BJ20100179
pubmed: 20345372
Xu Q (2002) Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 22(10):1547–1559
doi: 10.1161/01.ATV.0000029720.59649.50
Yurdagul A, Finney AC, Woolard MD, Orr AW (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473(10):1281–1295. https://doi.org/10.1042/BJ20150844
doi: 10.1042/BJ20150844
pubmed: 27208212
Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM, Wu T (2010) Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 15(5):675–686. https://doi.org/10.1007/s12192-010-0180-3
doi: 10.1007/s12192-010-0180-3
pubmed: 20300983
pmcid: 3006621
Zhang X, Tanguay RM, He M, Deng Q, Miao X, Zhou L et al (2011) Variants of HSPA1A in combination with plasma Hsp70 and anti-Hsp70 antibody levels associated with higher risk of acute coronary syndrome. Cardiology 119(1):57–64. https://doi.org/10.1159/000329917.
doi: 10.1159/000329917.
pubmed: 21849784
Zhu J, Quyyumi AA, Wu H, Csako G, Rott D, Zalles-Ganley A, Ogunmakinwa J, Halcox J, Epstein SE (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23(6):1055–1059. https://doi.org/10.1161/01.ATV.0000074899.60898.FD
doi: 10.1161/01.ATV.0000074899.60898.FD
pubmed: 12730089