Time and Mechanism of Nanoparticle Functionalization by Macromolecular Ligands during Pulsed Laser Ablation in Liquids.


Journal

Langmuir : the ACS journal of surfaces and colloids
ISSN: 1520-5827
Titre abrégé: Langmuir
Pays: United States
ID NLM: 9882736

Informations de publication

Date de publication:
26 Feb 2019
Historique:
pubmed: 17 1 2019
medline: 17 1 2019
entrez: 17 1 2019
Statut: ppublish

Résumé

Laser ablation of gold in liquids with nanosecond laser pulses in aqueous solutions of inorganic electrolytes and macromolecular ligands for gold nanoparticle size quenching is probed inside the laser-induced cavitation bubble by in situ X-ray multicontrast imaging with a Hartmann mask (XHI). It is found that (i) the in situ size quenching power of sodium chloride (NaCl) in comparison to the ablation in pure water can be observed by the scattering contrast from XHI already inside the cavitation bubble, while (ii) for polyvinylpyrrolidone (PVP) as a macromolecular model ligand an in situ size quenching cannot be observed. Complementary ex situ characterization confirms the overall size quenching ability of both additive types NaCl and PVP. The macromolecular ligand as well as its monomer N-vinylpyrrolidone (NVP) are mainly effective for growth quenching of larger nanoparticles on later time scales, leading to the conclusion of an alternative interaction mechanism with ablated nanoparticles compared to the electrolyte NaCl, probably outside of the cavitation bubble, in the surrounding liquid phase. While monomer and polymer have similar effects on the particle properties, with the polymer being slightly more efficient, only the polymer is effective against hydrodynamic aggregation.

Identifiants

pubmed: 30646687
doi: 10.1021/acs.langmuir.8b01585
doi:

Types de publication

Journal Article

Langues

eng

Pagination

3038-3047

Auteurs

Alexander Letzel (A)

Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE) , University of Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany.

Stefan Reich (S)

Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.

Tomy Dos Santos Rolo (T)

Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.
Department of Electrical and Electronic Engineering , Southern University of Science and Technology , 518055 Shenzen , China.

Alexander Kanitz (A)

Applied Laser Technologies , Ruhr-University Bochum , Universitätsstraße 150 , 44801 Bochum , Germany.

Jan Hoppius (J)

Applied Laser Technologies , Ruhr-University Bochum , Universitätsstraße 150 , 44801 Bochum , Germany.

Alexander Rack (A)

ESRF - The European Synchrotron Radiation Facility , 30843 Grenoble , France.

Margie P Olbinado (MP)

ESRF - The European Synchrotron Radiation Facility , 30843 Grenoble , France.

Andreas Ostendorf (A)

Applied Laser Technologies , Ruhr-University Bochum , Universitätsstraße 150 , 44801 Bochum , Germany.

Bilal Gökce (B)

Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE) , University of Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany.

Anton Plech (A)

Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.

Stephan Barcikowski (S)

Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE) , University of Duisburg-Essen , Universitätsstraße 7 , 45141 Essen , Germany.

Classifications MeSH