A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
01 09 2019
Historique:
received: 27 08 2018
revised: 04 12 2018
accepted: 10 01 2019
pubmed: 17 1 2019
medline: 9 6 2020
entrez: 17 1 2019
Statut: ppublish

Résumé

Enhancer-promoter interactions (EPIs) in the genome play an important role in transcriptional regulation. EPIs can be useful in boosting statistical power and enhancing mechanistic interpretation for disease- or trait-associated genetic variants in genome-wide association studies. Instead of expensive and time-consuming biological experiments, computational prediction of EPIs with DNA sequence and other genomic data is a fast and viable alternative. In particular, deep learning and other machine learning methods have been demonstrated with promising performance. First, using a published human cell line dataset, we demonstrate that a simple convolutional neural network (CNN) performs as well as, if no better than, a more complicated and state-of-the-art architecture, a hybrid of a CNN and a recurrent neural network. More importantly, in spite of the well-known cell line-specific EPIs (and corresponding gene expression), in contrast to the standard practice of training and predicting for each cell line separately, we propose two transfer learning approaches to training a model using all cell lines to various extents, leading to substantially improved predictive performance. Computer code is available at https://github.com/zzUMN/Combine-CNN-Enhancer-and-Promoters. Supplementary data are available at Bioinformatics online.

Identifiants

pubmed: 30649185
pii: 5289332
doi: 10.1093/bioinformatics/bty1050
pmc: PMC6735851
doi:

Substances chimiques

DNA 9007-49-2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2899-2906

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM113250
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM126002
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105397
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL116720
Pays : United States

Informations de copyright

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Références

Nat Genet. 2016 May;48(5):488-96
pubmed: 27064255
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Nat Genet. 2017 Oct;49(10):1428-1436
pubmed: 28869592
Bioinformatics. 2017 Jul 15;33(14):i252-i260
pubmed: 28881991
Curr Opin Genet Dev. 2012 Apr;22(2):79-85
pubmed: 22169023
J Am Stat Assoc. 2018;113(523):955-972
pubmed: 31354179
Cell. 2016 Nov 17;167(5):1369-1384.e19
pubmed: 27863249
Mol Syst Biol. 2016 Jul 29;12(7):878
pubmed: 27474269
Cell. 2012 Jan 20;148(1-2):84-98
pubmed: 22265404
Bioinformatics. 2018 Nov 1;34(21):3727-3737
pubmed: 29850911
Quant Biol. 2019 Jun;7(2):122-137
pubmed: 34113473
Genome Res. 2014 Nov;24(11):1854-68
pubmed: 25122612
Genetics. 2018 Jul;209(3):699-709
pubmed: 29728367

Auteurs

Zhong Zhuang (Z)

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.

Xiaotong Shen (X)

School of Statistics, University of Minnesota, Minneapolis, MN, USA.

Wei Pan (W)

Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH