Models for optimally controlling varicella and herpes zoster by varicella vaccination: a comparative study.
Herpes zoster
Models
Optimal control
Vaccination
Varicella
Journal
Medical & biological engineering & computing
ISSN: 1741-0444
Titre abrégé: Med Biol Eng Comput
Pays: United States
ID NLM: 7704869
Informations de publication
Date de publication:
May 2019
May 2019
Historique:
received:
12
09
2017
accepted:
04
12
2018
pubmed:
18
1
2019
medline:
19
9
2019
entrez:
18
1
2019
Statut:
ppublish
Résumé
The introduction of mass vaccination against Varicella-Zoster-Virus (VZV) is being delayed in many European countries mainly because of the "fear" of a subsequent boom in natural herpes zoster (HZ) incidence in the first decades after the initiation of vaccination, caused by the expected decline in the protective effect of natural immunity boosting due to reduced virus circulation. Optimal control theory has proven to be a successful tool in understanding ways to curtail the spread of infectious diseases by devising the optimal disease intervention strategies. In this paper, we describe how a reduced 'toy' model can extract the essentials of the dynamics of the VZV transmission and reactivation in case of the study of optimal paths of varicella immunization programs. Results obtained using different optimization approaches are compared with the ones of a more realistic age-structured model. The reduced model shows some unreliable predictions in regards of model time scales about herpes zoster dynamic; nevertheless, it is able to reproduce the main qualitative dynamic of the more realistic model to the different optimization problems, while requiring a minimal number of parameters to be identified. Graphical abstract ᅟ.
Identifiants
pubmed: 30652233
doi: 10.1007/s11517-018-1938-5
pii: 10.1007/s11517-018-1938-5
doi:
Substances chimiques
Chickenpox Vaccine
0
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1121-1132Références
Epidemiol Infect. 2000 Dec;125(3):651-69
pubmed: 11218215
Vaccine. 2002 Jun 7;20(19-20):2500-7
pubmed: 12057605
Proc R Soc Med. 1965 Jan;58:9-20
pubmed: 14267505
Arch Dis Child. 2003 Oct;88(10):862-9
pubmed: 14500303
Bull Math Biol. 1999 Nov;61(6):1031-64
pubmed: 17879870
Vaccine. 2007 Nov 7;25(45):7866-72
pubmed: 17919788
Vaccine. 2009 Feb 25;27(9):1454-67
pubmed: 19135492
Pediatr Infect Dis J. 2009 Nov;28(11):954-9
pubmed: 19536039
J Am Osteopath Assoc. 2009 Jun;109(6 Suppl 2):S13-7
pubmed: 19553630
Epidemiol Infect. 2010 Apr;138(4):469-81
pubmed: 19796447
Vaccine. 2011 Mar 16;29(13):2411-20
pubmed: 21277405
Vaccine. 2012 Feb 1;30(6):1225-34
pubmed: 22119592
Epidemiol Infect. 2012 Nov;140(11):2096-109
pubmed: 22230041
Am J Epidemiol. 2013 May 15;177(10):1134-42
pubmed: 23548754
PLoS One. 2013 Apr 17;8(4):e60732
pubmed: 23613740
Ann Intern Med. 2013 Dec 3;159(11):739-45
pubmed: 24297190
Lancet Infect Dis. 2014 Dec;14(12):1189-95
pubmed: 25455986
PLoS Curr. 2014 Sep 02;6:null
pubmed: 25642364
Proc Biol Sci. 2016 Mar 16;283(1826):20160054
pubmed: 26984627
Vaccine. 2018 Feb 14;36(8):1116-1125
pubmed: 29366704
BMC Med. 2018 Jul 17;16(1):117
pubmed: 30012132