On the reliability of measurements for a stent positioning simulation system.
Hemodynamics
Simulation
Virtual stent
Journal
International journal of medical informatics
ISSN: 1872-8243
Titre abrégé: Int J Med Inform
Pays: Ireland
ID NLM: 9711057
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
09
07
2018
revised:
16
10
2018
accepted:
26
12
2018
entrez:
19
1
2019
pubmed:
19
1
2019
medline:
20
7
2019
Statut:
ppublish
Résumé
Computer aided simulations are useful to support the physician in many steps of the surgical activity, but also in pre-surgical patient classification and in post-surgical diagnosis and treatment decisions. At a broader level, computerized technologies and infrastructures permeate every aspect of the medical activity, from patient management to surgery and patients' follow up with outcomes analyses. Radiography assisted surgery is often used in hemodynamic surgery to study and support cardio-circulatory stents positioning with the use of radioscopy coupled with contrast liquid injected into the vessels. Computer based surgery instruments (both software and hardware) are used to support clinicians during interventions, e.g., to reduce radioscopy time exposure, to minimize errors and to estimate tissues and organs dimension. In this paper we present the use of a newly developed system which supports physicians during transcatheter percutaneous coronary interventions. This paper presents a Java-based tool which acquires images from angiographic equipment during surgery procedures. An high performance image acquisition module has been used and a stent simulation environment module is available to simulate stent positioning and to measure vessels. Operators may acquire images, perform measurements and simulations on DICOM images. We performed tests off-line on images to validate the reliability of the tool. Real cases and on line tests have been performed by operators showing the robustness of the system to be used in surgery room. The system has been integrated in the surgery room control panel and allows (i) vascular images acquisition, (ii) vessels and coronary measurement and (iii) stent positioning simulations. The tool is an aid for the physician for both measuring tissues or lesions and for defining the stent's geometry and position before its deployment in the patient's vessels. Experiments have been performed on lesions and vessels by different operators using the system and an available commercial system, on both real patient cases and synthetic images designed with a CAD. It has been tested on 76 images extracted from real angiography cases and on 11 synthetic images created by using CAD. Five different operators performed 2128 measurements for the real cases images (for both Cartesio and CAAS tools) and 112 for the synthetic dataset. Results show the efficacy of the system compared with the commercial one by means of several statistical tests. The proposed system is a reliable tool for hemodynamic surgery and can be used both for decision support in stent positioning procedures and for didactic training of new physicians.
Sections du résumé
BACKGROUND AND OBJECTIVE
Computer aided simulations are useful to support the physician in many steps of the surgical activity, but also in pre-surgical patient classification and in post-surgical diagnosis and treatment decisions. At a broader level, computerized technologies and infrastructures permeate every aspect of the medical activity, from patient management to surgery and patients' follow up with outcomes analyses. Radiography assisted surgery is often used in hemodynamic surgery to study and support cardio-circulatory stents positioning with the use of radioscopy coupled with contrast liquid injected into the vessels. Computer based surgery instruments (both software and hardware) are used to support clinicians during interventions, e.g., to reduce radioscopy time exposure, to minimize errors and to estimate tissues and organs dimension. In this paper we present the use of a newly developed system which supports physicians during transcatheter percutaneous coronary interventions.
METHODS
This paper presents a Java-based tool which acquires images from angiographic equipment during surgery procedures. An high performance image acquisition module has been used and a stent simulation environment module is available to simulate stent positioning and to measure vessels. Operators may acquire images, perform measurements and simulations on DICOM images. We performed tests off-line on images to validate the reliability of the tool. Real cases and on line tests have been performed by operators showing the robustness of the system to be used in surgery room. The system has been integrated in the surgery room control panel and allows (i) vascular images acquisition, (ii) vessels and coronary measurement and (iii) stent positioning simulations. The tool is an aid for the physician for both measuring tissues or lesions and for defining the stent's geometry and position before its deployment in the patient's vessels.
RESULTS
Experiments have been performed on lesions and vessels by different operators using the system and an available commercial system, on both real patient cases and synthetic images designed with a CAD. It has been tested on 76 images extracted from real angiography cases and on 11 synthetic images created by using CAD. Five different operators performed 2128 measurements for the real cases images (for both Cartesio and CAAS tools) and 112 for the synthetic dataset. Results show the efficacy of the system compared with the commercial one by means of several statistical tests.
CONCLUSIONS
The proposed system is a reliable tool for hemodynamic surgery and can be used both for decision support in stent positioning procedures and for didactic training of new physicians.
Identifiants
pubmed: 30654900
pii: S1386-5056(18)30760-3
doi: 10.1016/j.ijmedinf.2018.12.008
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23-28Informations de copyright
Copyright © 2018 Elsevier B.V. All rights reserved.