An automated Bayesian pipeline for rapid analysis of single-molecule binding data.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 01 2019
Historique:
received: 18 04 2018
accepted: 13 12 2018
entrez: 19 1 2019
pubmed: 19 1 2019
medline: 21 3 2019
Statut: epublish

Résumé

Single-molecule binding assays enable the study of how molecular machines assemble and function. Current algorithms can identify and locate individual molecules, but require tedious manual validation of each spot. Moreover, no solution for high-throughput analysis of single-molecule binding data exists. Here, we describe an automated pipeline to analyze single-molecule data over a wide range of experimental conditions. In addition, our method enables state estimation on multivariate Gaussian signals. We validate our approach using simulated data, and benchmark the pipeline by measuring the binding properties of the well-studied, DNA-guided DNA endonuclease, TtAgo, an Argonaute protein from the Eubacterium Thermus thermophilus. We also use the pipeline to extend our understanding of TtAgo by measuring the protein's binding kinetics at physiological temperatures and for target DNAs containing multiple, adjacent binding sites.

Identifiants

pubmed: 30655518
doi: 10.1038/s41467-018-08045-5
pii: 10.1038/s41467-018-08045-5
pmc: PMC6336789
doi:

Substances chimiques

Argonaute Proteins 0
Bacterial Proteins 0
DNA, Single-Stranded 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

272

Subventions

Organisme : NIGMS NIH HHS
ID : R37 GM062862
Pays : United States
Organisme : NIDA NIH HHS
ID : U01 DA047733
Pays : United States

Références

Nat Methods. 2010 May;7(5):373-5
pubmed: 20364146
RNA. 2011 Oct;17(10):1858-69
pubmed: 21878547
Biophys J. 2006 Sep 1;91(5):1941-51
pubmed: 16766620
Appl Opt. 2007 Apr 1;46(10):1819-29
pubmed: 17356626
Science. 2011 Mar 11;331(6022):1289-95
pubmed: 21393538
Nature. 2009 Oct 8;461(7265):754-61
pubmed: 19812667
Cell. 2012 Feb 17;148(4):679-89
pubmed: 22341441
Nat Methods. 2008 Feb;5(2):155-7
pubmed: 18193054
J Cell Biol. 2015 May 25;209(4):609-19
pubmed: 26008747
Nature. 2008 Nov 13;456(7219):209-13
pubmed: 18754009
Biophys J. 2000 Oct;79(4):1915-27
pubmed: 11023897
Biophys J. 2009 Dec 16;97(12):3196-205
pubmed: 20006957
J Am Chem Soc. 2013 Nov 13;135(45):16865-71
pubmed: 24175926
Biophys J. 2008 Mar 1;94(5):1826-35
pubmed: 17921203
Nat Struct Mol Biol. 2011 Oct 23;18(11):1244-9
pubmed: 22020299
Biophys J. 1997 Apr;72(4):1744-53
pubmed: 9083678
Cell Rep. 2013 Oct 17;5(1):151-65
pubmed: 24075986
PLoS One. 2012;7(2):e30024
pubmed: 22363412
Biophys J. 2009 Mar 18;96(6):2371-81
pubmed: 19289062
Cell. 2015 Jul 2;162(1):96-107
pubmed: 26140593
Biophys J. 2014 Mar 18;106(6):1327-37
pubmed: 24655508
Mol Cell. 2007 Jul 6;27(1):91-105
pubmed: 17612493
Mol Cell. 2017 Mar 16;65(6):985-998.e6
pubmed: 28262506
Nat Methods. 2015 Nov;12(11):1077-84
pubmed: 26414013
Nat Commun. 2013;4:1505
pubmed: 23422673
J Opt Soc Am A Opt Image Sci Vis. 2010 Sep 1;27(9):2038-45
pubmed: 20808414
Anal Chem. 2016 Apr 19;88(8):4269-76
pubmed: 27015152
Mol Cell. 2015 Jul 2;59(1):117-24
pubmed: 26140367
Biophys J. 2012 Sep 19;103(6):1315-24
pubmed: 22995504
J Phys Chem A. 2003 Sep 3;107(38):7454-7464
pubmed: 19626138
RNA. 2008 Jan;14(1):170-9
pubmed: 18025254
Nature. 2008 Dec 18;456(7224):921-6
pubmed: 19092929
Mol Cell. 2015 Jul 2;59(1):125-32
pubmed: 26140368
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):652-7
pubmed: 24374628
Nat Methods. 2015 Sep;12(9):838-40
pubmed: 26192083
Methods. 2015 Sep 15;86:27-36
pubmed: 26032816
Cell. 2015 Jul 2;162(1):84-95
pubmed: 26140592
Biophys J. 2018 Jul 17;115(2):276-282
pubmed: 29937205
Nat Methods. 2013 Mar;10(3):265-9
pubmed: 23396281
Biochemistry. 2018 Mar 13;57(10):1572-1576
pubmed: 29457977
Nature. 2014 Mar 13;507(7491):258-261
pubmed: 24531762
Mol Cell. 2014 Dec 4;56(5):708-16
pubmed: 25453759
J Biomol Tech. 2015 Jul;26(2):37-44
pubmed: 25802488
Nucleic Acids Res. 2014;42(16):10265-77
pubmed: 25120267
Elife. 2015 Sep 11;4:
pubmed: 26359634

Auteurs

Carlas S Smith (CS)

RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA. carlas.smith@merton.ox.ac.uk.
Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK. carlas.smith@merton.ox.ac.uk.

Karina Jouravleva (K)

RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.

Maximiliaan Huisman (M)

RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.

Samson M Jolly (SM)

RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.

Phillip D Zamore (PD)

RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA. phillip.zamore@umassmed.edu.
Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA. phillip.zamore@umassmed.edu.

David Grunwald (D)

RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA. david.grunwald@umassmed.edu.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Classifications MeSH