Rotundic acid induces Cas3-MCF-7 cell apoptosis through the p53 pathway.
MCF-7 cells
apoptosis
p53
rotundic acid
Journal
Oncology letters
ISSN: 1792-1074
Titre abrégé: Oncol Lett
Pays: Greece
ID NLM: 101531236
Informations de publication
Date de publication:
Jan 2019
Jan 2019
Historique:
received:
16
01
2018
accepted:
13
04
2018
entrez:
19
1
2019
pubmed:
19
1
2019
medline:
19
1
2019
Statut:
ppublish
Résumé
In the present study, the functions and mechanisms of rotundic acid (RA) underlying its induction of apoptosis in caspase-3-transfected MCF-7 human breast cancer cells (Cas3-MCF-7 cells) were investigated. RA induced apoptosis in Cas3-MCF-7 cells more efficiently compared with that in MCF-7 cells transfected with control plasmid. The results from an MTT assay demonstrated that RA effectively inhibited Cas3-MCF-7 cell viability in a dose-dependent manner and induced cell apoptosis via caspase-3 activity within 12 to 48 h. Western blotting and fluorescence-activated cell sorting demonstrated that RA initiated Cas3-MCF-7 cell apoptosis via p53 activation. The silencing of the p53 gene in the Cas3-MCF-7 cell line led to decreased RA-induced Cas3-MCF-7 cell caspase-3 activity and cell apoptosis. Collectively, the results of the present study indicate that caspase-3 serves a critical function in rotundic acid-induced apoptosis, and suggest that caspase-3 deficiency may contribute to the chemotherapy-resistance of breast cancer. Reconstitution of caspase-3 sensitizes MCF-7 breast cancer cells to chemotherapy. RA has the potential for development as a novel drug combined with reconstitution of caspase-3 gene therapy for the treatment of human breast cancer with caspase-3 deficiency.
Identifiants
pubmed: 30655810
doi: 10.3892/ol.2018.9616
pii: OL-0-0-9616
pmc: PMC6313092
doi:
Types de publication
Journal Article
Langues
eng
Pagination
630-637Références
Phytother Res. 1999 Mar;13(2):151-6
pubmed: 10190191
Nature. 2000 Oct 12;407(6805):770-6
pubmed: 11048727
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Int J Oncol. 2005 Jun;26(6):1675-80
pubmed: 15870885
Chem Pharm Bull (Tokyo). 2007 May;55(5):784-8
pubmed: 17473469
Am Fam Physician. 2008 Feb 1;77(3):311-9
pubmed: 18297955
J Cell Biochem. 2011 Jan;112(1):273-88
pubmed: 21080333
Molecules. 2012 Jan 31;17(2):1278-91
pubmed: 22293846
Cancer Treat Rev. 2012 Oct;38(6):760-6
pubmed: 22342104
PLoS One. 2012;7(2):e32267
pubmed: 22359675
J Cancer Res Clin Oncol. 2012 Jun;138(6):1045-55
pubmed: 22392074
Oncologist. 2013;18(2):134-40
pubmed: 23359433
J Biochem. 2013 Sep;154(3):237-48
pubmed: 23678008
Breast. 2013 Aug;22 Suppl 2:S27-9
pubmed: 24074787
Psychoneuroendocrinology. 2014 May;43:20-9
pubmed: 24703167
Clin Breast Cancer. 2014 Aug;14(4):228-34
pubmed: 24703985
Oncol Rep. 2015 May;33(5):2420-8
pubmed: 25812934
Medicine (Baltimore). 2015 Aug;94(32):e1359
pubmed: 26266392
J Cancer Res Ther. 2015 Jul-Sep;11(3):508-13
pubmed: 26458575
Biochem Biophys Res Commun. 2016 Mar 4;471(2):290-5
pubmed: 26850851
Z Naturforsch C. 2016;71(5-6):95-103
pubmed: 27166720
PLoS One. 2016 Jul 21;11(7):e0158963
pubmed: 27441372
Biomed Pharmacother. 2016 Dec;84:1906-1914
pubmed: 27863838
Biomed Pharmacother. 2017 Jan;85:202-208
pubmed: 27919736
Brain Res. 2017 Feb 15;1657:9-15
pubmed: 27923634
EBioMedicine. 2017 Mar;17:101-107
pubmed: 28219627
J Cell Mol Med. 2017 Dec;21(12):3506-3514
pubmed: 28767184
Cancers (Basel). 2018 May 19;10(5):null
pubmed: 29783721
Arch Toxicol. 2018 Aug;92(8):2645-2648
pubmed: 29947891
Phytochemistry. 1997 Jul;45(5):1073-8
pubmed: 9264607