Circular RNA circ-PRKCI functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-3680-3p in esophageal squamous cell carcinoma.
cell migration
cell proliferation
circular RNA_PRKCI (circ-PRKCI)
esophageal squamous cell carcinoma
miR-3680-3p
Journal
Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
received:
28
08
2018
accepted:
24
10
2018
pubmed:
20
1
2019
medline:
6
8
2020
entrez:
20
1
2019
Statut:
ppublish
Résumé
Circular RNA (circRNA) is a new noncoding RNAs and plays an important role in many pathological processes. Recently, studies have shown that circular RNA_PRKCI (circ-PRKCI) regulates cell proliferation and cell migration of tumor cells. Esophageal carcinoma is a highly malignant digestive tract tumor, which is divided into esophageal adenocarcinoma and esophageal squamous cell carcinoma. In this study, we studied whether circ-PRKCI might influence cell proliferation and cell migration in esophageal squamous cell carcinoma. Quantitative reverse transcription PCR was performed to detect the relative expression of circ-PRKCI in five cases of esophageal squamous cell carcinoma and five cases of paired adjacent normal tissues. RNA immunoprecipitation assay and Luciferase assay confirm the direct interaction between miR-3680-3p and AKT3 or circ-PRKCI. Ethynyldeoxyuridine assays and cell counting Kit-8 were performed to evaluate the effect of miR-3680-3p or circ-PRKCI on cell proliferation, transwell assays were also performed to detect migration in vitro. We found circ-PRKCI is obviously upregulated in esophageal squamous cell carcinoma and upregulation of circ-PRKCI stimulated cell migration and proliferation of ESCC cells. In the mechanism, we confirm that circ-PRKCI, as a molecular sponge of miR-3680-3p, upregulates the expression of AKT. In conclusion, our current studies have been revealing that circ-PRKCI/miR-3680-3p/AKT3 regulatory network plays an important role in esophageal squamous cell carcinoma and that provide new insights into the pathogenesis of esophageal squamous cell carcinoma.
Substances chimiques
MIRN3680 microRNA, human
0
MicroRNAs
0
RNA, Circular
0
RNA, Neoplasm
0
AKT3 protein, human
EC 2.7.11.1
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
10021-10030Informations de copyright
© 2019 Wiley Periodicals, Inc.