Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles.
Animals
Cell Line, Tumor
Cell Survival
/ drug effects
Disease Models, Animal
Heterografts
Humans
Infrared Rays
Luminescent Measurements
Mice
Models, Theoretical
Nanoparticles
Neoplasm Transplantation
Neoplasms
/ diagnosis
Optical Imaging
/ methods
Photochemotherapy
/ methods
Theranostic Nanomedicine
/ methods
Treatment Outcome
active targeting
aggregation-induced emission (AIE)
near infrared light
photodynamic therapy
tumor imaging
Journal
Theranostics
ISSN: 1838-7640
Titre abrégé: Theranostics
Pays: Australia
ID NLM: 101552395
Informations de publication
Date de publication:
2019
2019
Historique:
received:
25
09
2018
accepted:
13
11
2018
entrez:
22
1
2019
pubmed:
22
1
2019
medline:
4
12
2019
Statut:
epublish
Résumé
Photodynamic therapy (PDT) has been widely applied in the clinic for the treatment of various types of cancer due to its precise controllability, minimally invasive approach and high spatiotemporal accuracy as compared with conventional chemotherapy. However, the porphyrin-based photosensitizers (PSs) used in clinics generally suffer from aggregation-caused reductions in the generation of reactive oxygen species (ROS) and limited tissue penetration because of visible light activation, which greatly hampers their applications for the treatment of deep-seated tumors.
Identifiants
pubmed: 30662565
doi: 10.7150/thno.30174
pii: thnov09p0246
pmc: PMC6332794
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
246-264Déclaration de conflit d'intérêts
Competing Interests: The authors have declared that no competing interest exists.
Références
J Control Release. 2016 Feb 28;224:77-85
pubmed: 26773767
N Engl J Med. 2016 Apr 14;374(15):1444-54
pubmed: 27007578
ACS Nano. 2014 Oct 28;8(10):10621-30
pubmed: 25291544
Nature. 2016 Jan 21;529(7586):351-7
pubmed: 26760213
Nat Rev Cancer. 2012 Dec;12(12):835-48
pubmed: 23151603
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11600-5
pubmed: 16087878
ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4875-82
pubmed: 25671791
Nat Commun. 2016 Jan 20;7:10432
pubmed: 26786559
Acta Biomater. 2016 Sep 15;42:199-208
pubmed: 27435964
Adv Mater. 2017 Jul;29(28):
pubmed: 28556297
Chem Soc Rev. 2015 Mar 21;44(6):1302-17
pubmed: 25042637
Toxicol Appl Pharmacol. 2009 Dec 1;241(2):163-72
pubmed: 19695274
Chem Rev. 2015 Feb 25;115(4):1990-2042
pubmed: 25602130
Adv Mater. 2016 Apr 13;28(14):2716-23
pubmed: 26848553
Adv Mater. 2017 Sep;29(33):
pubmed: 28671732
ACS Nano. 2017 Jun 27;11(6):6261-6270
pubmed: 28482150
Nat Med. 2012 Oct;18(10):1580-5
pubmed: 22983397
Nat Commun. 2018 Feb 22;9(1):766
pubmed: 29472567
Small. 2017 Nov;13(44):
pubmed: 28961374
Tissue Eng Part C Methods. 2012 Aug;18(8):583-92
pubmed: 22320435
Nanoscale. 2013 Feb 7;5(3):944-52
pubmed: 23223581
Chem Soc Rev. 2013 Aug 21;42(16):6620-33
pubmed: 23744297
Chem Soc Rev. 2013 Sep 7;42(17):7117-29
pubmed: 23364156
Nat Rev Cancer. 2006 Jul;6(7):535-45
pubmed: 16794636
Acc Chem Res. 2013 Nov 19;46(11):2441-53
pubmed: 23742638
ACS Nano. 2011 May 24;5(5):3651-9
pubmed: 21452822
ACS Nano. 2014 Jul 22;8(7):6620-32
pubmed: 24923902
Nat Nanotechnol. 2015 Mar;10(3):237-42
pubmed: 25599189
Nanoscale. 2015 Mar 14;7(10):4423-31
pubmed: 25613526
J Am Chem Soc. 2018 Jun 27;140(25):8005-8019
pubmed: 29874067
Chem Commun (Camb). 2016 Feb 14;52(13):2752-5
pubmed: 26759835
Sci Rep. 2013;3:1150
pubmed: 23359649
Nano Lett. 2014 Jun 11;14(6):3634-9
pubmed: 24874018
Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1780-6
pubmed: 25504495
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):7941-7949
pubmed: 28177223
ACS Appl Mater Interfaces. 2017 Aug 16;9(32):26731-26739
pubmed: 28745482
Chem Commun (Camb). 2014 Aug 14;50(63):8757-60
pubmed: 24967727
Angew Chem Int Ed Engl. 2018 May 22;57(21):6049-6053
pubmed: 29480962
Nat Mater. 2016 Nov;15(11):1212-1221
pubmed: 27525571
Chem Soc Rev. 2016 Nov 21;45(23):6597-6626
pubmed: 27722328
ACS Nano. 2012 Sep 25;6(9):8280-7
pubmed: 22928629
J Am Chem Soc. 2010 Aug 11;132(31):10645-7
pubmed: 20681684
Biomaterials. 2017 Nov;146:115-135
pubmed: 28915410
Nat Rev Cancer. 2004 Jun;4(6):437-47
pubmed: 15170446
Nanoscale. 2015 Mar 7;7(9):3888-902
pubmed: 25422147
Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9029-9033
pubmed: 28585742
Chem Soc Rev. 2011 Nov;40(11):5361-88
pubmed: 21799992
Adv Mater. 2016 May;28(17):3313-20
pubmed: 26948067
Nat Nanotechnol. 2013 Jan;8(1):61-8
pubmed: 23241654
Nat Commun. 2012;3:1193
pubmed: 23149738
Acta Biomater. 2017 Apr 15;53:29-45
pubmed: 28159716
Nat Commun. 2015 Nov 03;6:8785
pubmed: 26525216
Small. 2015 Sep;11(36):4682-90
pubmed: 26113312
Adv Mater. 2018 Aug;30(35):e1802808
pubmed: 29999559
Biomaterials. 2010 Jun;31(18):4829-34
pubmed: 20346495
Chem Sci. 2015 Aug 1;6(8):4580-4586
pubmed: 28717475
ACS Nano. 2018 Aug 28;12(8):8145-8159
pubmed: 30074773
J Mater Chem B. 2014 Jan 14;2(2):231-238
pubmed: 32261611
Biomaterials. 2017 Nov;144:73-83
pubmed: 28823845
Molecules. 2011 Dec 23;17(1):98-144
pubmed: 22198535
J Am Chem Soc. 2018 Jun 20;140(24):7730-7736
pubmed: 29787269
Anticancer Agents Med Chem. 2008 Apr;8(3):269-79
pubmed: 18393786
Nanoscale. 2018 Aug 23;10(33):15485-15495
pubmed: 29881851
J Mater Chem B. 2017 Feb 28;5(8):1650-1657
pubmed: 32263937
Angew Chem Int Ed Engl. 2014 Jun 23;53(26):6772-5
pubmed: 24848546
ACS Nano. 2018 Aug 28;12(8):8520-8530
pubmed: 30071159
Chem Rev. 2014 May 28;114(10):5161-214
pubmed: 24605868
ACS Nano. 2017 Apr 25;11(4):3922-3932
pubmed: 28383899
Nat Protoc. 2016 Apr;11(4):688-713
pubmed: 26963631
Nano Lett. 2015 Nov 11;15(11):7400-7
pubmed: 26487489
ACS Nano. 2017 May 23;11(5):4463-4474
pubmed: 28362496
Chem Soc Rev. 2015 May 21;44(10):2798-811
pubmed: 25686761
Chem Soc Rev. 2013 Feb 7;42(3):1236-50
pubmed: 23175134