Sparsity adaptive reconstruction for highly accelerated cardiac MRI.
adaptive
cardiac MRI
cine
compressed sensing
image reconstruction
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
received:
25
07
2018
revised:
02
01
2019
accepted:
03
01
2019
pubmed:
23
1
2019
medline:
19
5
2020
entrez:
23
1
2019
Statut:
ppublish
Résumé
To enable parameter-free, accelerated cardiovascular magnetic resonance (CMR). Regularized reconstruction methods, such as compressed sensing (CS), can significantly accelerate MRI data acquisition but require tuning of regularization weights. In this work, a technique, called Sparsity adaptive Composite Recovery (SCoRe) that exploits sparsity in multiple, disparate sparsifying transforms is presented. A data-driven adjustment of the relative contributions of different transforms yields a parameter-free CS recovery process. SCoRe is validated in a dynamic digital phantom as well as in retrospectively and prospectively undersampled cine CMR data. The results from simulation and 6 retrospectively undersampled datasets indicate that SCoRe with auto-tuned regularization weights yields lower root-mean-square error (RMSE) and higher structural similarity index (SSIM) compared to state-of-the-art CS methods. In 45 prospectively undersampled datasets acquired from 15 volunteers, the image quality was scored by 2 expert reviewers, with SCoRe receiving a higher average score (p < 0.01) compared to other CS methods. SCoRe enables accelerated cine CMR from highly undersampled data. In contrast to other acceleration techniques, SCoRe adapts regularization weights based on noise power and level of sparsity in each transform, yielding superior performance without admitting any free parameters.
Identifiants
pubmed: 30666694
doi: 10.1002/mrm.27671
pmc: PMC6435424
mid: NIHMS1011442
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3875-3887Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL135489
Pays : United States
Informations de copyright
© 2019 International Society for Magnetic Resonance in Medicine.
Références
PLoS One. 2014 Oct 28;9(10):e110594
pubmed: 25350290
Magn Reson Imaging. 2014 Dec;32(10):1353-64
pubmed: 25131624
Magn Reson Med. 2009 Jan;61(1):103-16
pubmed: 19097216
Magn Reson Med. 2015 Mar;73(3):1125-36
pubmed: 24760724
Magn Reson Med. 1999 Nov;42(5):952-62
pubmed: 10542355
IEEE Trans Med Imaging. 2011 May;30(5):1028-41
pubmed: 21047708
J Am Stat Assoc. 2010 Mar 1;105(489):312-323
pubmed: 20676354
IEEE Trans Biomed Eng. 2014 Apr;61(4):1109-20
pubmed: 24658236
Magn Reson Med. 2014 May;71(5):1760-70
pubmed: 23821331
Magn Reson Med. 2016 Feb;75(2):775-88
pubmed: 25809847
Magn Reson Med. 2010 Sep;64(3):767-76
pubmed: 20535813
Magn Reson Med. 2008 Feb;59(2):365-73
pubmed: 18228595
Magn Reson Med. 2014 Sep;72(3):707-17
pubmed: 24142845
Magn Reson Med. 2002 Jun;47(6):1202-10
pubmed: 12111967
Magn Reson Med. 2012 Apr;67(4):1054-64
pubmed: 22083998
Magn Reson Med. 2009 Dec;62(6):1574-84
pubmed: 19785017
Magn Reson Med. 2007 Dec;58(6):1182-95
pubmed: 17969013
Proc IEEE Int Symp Biomed Imaging. 2011 Dec 31;2011:1039-1043
pubmed: 24443670
Magn Reson Med. 2011 Feb;65(2):480-91
pubmed: 21264937
J Cardiovasc Magn Reson. 2014 Aug 20;16:63
pubmed: 25204441
IEEE Trans Image Process. 2010 Sep;19(9):2345-56
pubmed: 20378469
Magn Reson Med. 2014 Mar;71(3):990-1001
pubmed: 23649942
Br J Radiol. 2015;88(1056):20150487
pubmed: 26402216
Med Phys. 2012 Aug;39(8):5204-11
pubmed: 22894445
Magn Reson Med. 2017 Apr;77(4):1505-1515
pubmed: 27059406
J Magn Reson Imaging. 2013 Jun;37(6):1419-26
pubmed: 23172846
Magn Reson Med. 2015 Nov;74(5):1266-78
pubmed: 25385540