The effect of tantalum incorporation on the physical and chemical properties of ternary silicon-calcium-phosphorous mesoporous bioactive glasses.


Journal

Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238

Informations de publication

Date de publication:
10 2019
Historique:
received: 27 09 2018
revised: 05 12 2018
accepted: 19 12 2018
pubmed: 25 1 2019
medline: 12 8 2020
entrez: 25 1 2019
Statut: ppublish

Résumé

Synthesis and characterization of the first mesoporous bioactive glasses (MBGs) containing tantalum are reported here, along with their potential application as hemostats. Silica MBGs were synthesized using with the molar composition of (80-x)% Si, 15% Ca, 5% P, and x% Ta. It was found that incorporation of >1 mol % Ta into the MBGs changes their physical and chemical properties. Increasing Ta content from 0 to 10 mol % causes a decrease in the surface area and pore volume of ~20 and ~35%, respectively. This is due to the increase in nonbridging oxygens and mismatch of thermal expansion coefficient which created discontinuities in the ordered channel structure. However, the effect is not significant on the amount of ions (Si, Ca, P, and Ta) released, from the sample into deionized water, for short durations (<60 min). In a mouse tail-cut model, a significant decrease in bleeding time (≥50% of average bleeding time) was found for Ta-MBGs compared to having no treatment, Arista, and MBG without Ta. Further studies are proposed to determine the mechanism of Ta involvement with the hemostatic process. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2229-2237, 2019.

Identifiants

pubmed: 30676687
doi: 10.1002/jbm.b.34310
doi:

Substances chimiques

Tantalum 6424HBN274
Calcium SY7Q814VUP
Silicon Z4152N8IUI

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2229-2237

Informations de copyright

© 2019 Wiley Periodicals, Inc.

Références

Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971;5:117-141.
Vichery C, Nedelec J-M. Bioactive glass nanoparticles: From synthesis to materials design for biomedical applications. Materials 2016;9:288-305.
Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed 2004;43:5980-5984.
Wu C, Chang J. Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus 2012;2:292-306.
González P, Serra J, Liste S, Chiussi S, León B, Pérez-Amor M. Raman spectroscopic study of bioactive silica based glasses. J Non Cryst Solids 2003;320:92-99.
Lovelock JE, Porterfield BM. Blood clotting: The function of electrolytes and of calcium. Biochem J 1952;50:415-420.
Hu G, Xiao L, Tong P, Bi D, Wang H, Ma H, Zhu G, Liu H. Antibacterial hemostatic dressings with nanoporous bioglass containing silver. Int J Nanomedicine 2012;7:2613-2620.
Phetnin R, Rattanachan ST. Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. J Sol-Gel Sci Technol 2015;75:279-290.
Gargiulo N, Cusano AM, Causa F, Caputo D, Netti PA. Silver-containing mesoporous bioactive glass with improved antibacterial properties. J Mater Sci Mater Med 2013;24:2129-2135.
Baino F, Fiorilli S, Vitale-Brovarone C. Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances. Acta Biomater 2016;42:18-32.
Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Samuel S, Naveen SV, Kamarul T, Towler MR. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J Mater Chem B 2015;4:71-86.
Spotnitz WD, Burks S. Hemostats, sealants, and adhesives: Components of the surgical toolbox. Transfusion 2008;48:1502-1516.
Kheirabadi B. Evaluation of topical hemostatic agents for combat wound treatment. US Army Med Dep J 2011;2:25-37.
Spencer HT, Hsu JT, McDonald DR, Karlin LI. Intraoperative anaphylaxis to gelatin in topical hemostatic agents during anterior spinal fusion: A case report. Spine J Off J North Am Spine Soc 2012;12:e1-e6.
Schreiber MA, Neveleff DJ. Achieving hemostasis with topical hemostats: Making clinically and economically appropriate decisions in the surgical and trauma settings. AORN J 2011;94:S1-S20.
Offodile AC, Chen B, Aherrera AS, Guo L. Microporous polysaccharide hemospheres potentiate ischemia-induced skin flap necrosis in a murine model. Plast Reconstr Surg 2017;139:59e-66e.
Pourshahrestani S, Zeimaran E, Djordjevic I, Kadri NA, Towler MR. Inorganic hemostats: The state-of-the-art and recent advances. Mater Sci Eng C 2016;58:1255-1268.
Arnaud F, Tomori T, Carr W, McKeague A, Teranishi K, Prusaczyk K, McCarron R. Exothermic reaction in zeolite hemostatic dressings: QuikClot ACS and ACS+®. Ann Biomed Eng 2008;36:1708-1713.
Johnson D, Gegel B, Burgert J, Gasko J, Cromwell C, Jaskowska M, Steward R, Taylor A. The effects of QuikClot combat gauze, fluid resuscitation, and movement on hemorrhage control in a porcine model. ISRN Emerg Med 2012;2012:1-6.
Samuels PB, Roedling H, Katz R, Cincotti JJ. A new hemostatic clip: 2-year review of 1007 cases. Ann Surg 1966;163:427-431.
Olson CT, Hoffmann RW. Tantalum oxide composition [Internet]. 1949 [cited 2017 Dec 8]. Available from: http://www.google.com/patents/US2491416
Wu C, Chang J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 2014;193:282-295.
Majekodunmi SOA. Review on centrifugation in the pharmaceutical industry. Am J Biomed Eng 2015;5:67-78.
Greene TK, Schiviz A, Hoellriegl W, Poncz M, Muchitsch E-M. Towards a standardization of the murine tail bleeding model. J Thromb Haemost 2010;8:2820-2822.
Zhao D, Wan Y, Zhou W. Ordered Mesoporous Materials. Weinheim, Germany: Wiley-VCH; 2013. p. 522.
Barrioni BR, Oliveira AC, Leite M de F, Pereira M de M. Sol-gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering. J Mater Sci 2017;52:8904-8927.
Philippart A, Boccardi E, Pontiroli L, Beltrán AM, Inayat A, Vitale-Brovarone C, Schwieger W, Spiecker E, Boccaccini AR. Development of novel mesoporous silica-based bioactive glass scaffolds with drug delivery capabilities. Adv Sci Technol 2014;96:54-60.
Serra J, González P, Liste S, Serra C, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M. FTIR and XPS studies of bioactive silica based glasses. J Non Cryst Solids 2003;332:20-27.
Shah AT, Ain Q, Chaudhry AA, Khan AF, Iqbal B, Ahmad S, Siddiqi SA, ur Rehman I. A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass. J Mater Sci 2015;50:1794-1804.
Boon GD. An overview of hemostasis. Toxicol Pathol 1993;21:170-179.
Pérez-Pariente J, Balas F, Vallet-Regí M. Surface and chemical study of SiO 2 ·P 2 O 5 ·CaO·(MgO) bioactive glasses. Chem Mater 2000;12:750-755.
Alhalawani AMF, Towler MR. The effect of ZnO ↔ Ta 2 O 5 substitution on the structural and thermal properties of SiO 2 -ZnO-SrO-CaO-P 2 O 5 glasses. Mater Charact 2016;114:218-224.
Bellucci D, Cannillo V, Sola A. Coefficient of thermal expansion of bioactive glasses: Available literature data and analytical equation estimates. Ceram Int 2011;37:2963-2972.
Hidnert P. Thermal expansion of tantalum. Bur Stand J Res 1929;2:887.
Alhalawani AM, Mehrvar C, Stone W, Waldman SD, Towler MR. A novel tantalum-containing bioglass. Part II. Development of a bioadhesive for sternal fixation and repair. Mater Sci Eng C 2017;71:401-411.
Murat F-JL, Ereth MH, Dong Y, Piedra MP, Gettman MT. Evaluation of microporous polysaccharide hemospheres as a novel hemostatic agent in open partial nephrectomy: Favorable experimental results in the porcine model. J Urol 2004;172:1119-1122.

Auteurs

Andrew Mendonca (A)

Department of Biomedical Engineering, Ryerson University, Toronto, M5B 2K3, Ontario, Canada.
Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Ontario, Canada.

Md Saidur Rahman (MS)

Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Ontario, Canada.
Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, M5B 2K3, Ontario, Canada.

Adel Alhalawani (A)

Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Ontario, Canada.
Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, M5B 2K3, Ontario, Canada.

Omar Rodriguez (O)

Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Ontario, Canada.
Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, M5B 2K3, Ontario, Canada.

Reid C Gallant (RC)

Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Ontario, Canada.

Heyu Ni (H)

Canadian Blood Services Centre for Innovation, Toronto, M5G 2M1, Ontario, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Ontario, Canada.

Owen M Clarkin (OM)

School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland.

Mark R Towler (MR)

Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, Ontario, Canada.
Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, M5B 2K3, Ontario, Canada.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH