Hand Movement Classification Using Burg Reflection Coefficients.
classification algorithms
electromyography
feature selection
hand movement
health monitoring
machine learning
maximum entropy reflection coefficients
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
24 Jan 2019
24 Jan 2019
Historique:
received:
26
10
2018
revised:
31
12
2018
accepted:
16
01
2019
entrez:
27
1
2019
pubmed:
27
1
2019
medline:
27
1
2019
Statut:
epublish
Résumé
Classification of electromyographic signals has a wide range of applications, from clinical diagnosis of different muscular diseases to biomedical engineering, where their use as input for the control of prosthetic devices has become a hot topic of research. The challenge of classifying these signals relies on the accuracy of the proposed algorithm and the possibility of its implementation in hardware. This paper considers the problem of electromyography signal classification, solved with the proposed signal processing and feature extraction stages, with the focus lying on the signal model and time domain characteristics for better classification accuracy. The proposal considers a simple preprocessing technique that produces signals suitable for feature extraction and the Burg reflection coefficients to form learning and classification patterns. These coefficients yield a competitive classification rate compared to the time domain features used. Sometimes, the feature extraction from electromyographic signals has shown that the procedure can omit less useful traits for machine learning models. Using feature selection algorithms provides a higher classification performance with as few traits as possible. The algorithms achieved a high classification rate up to 100% with low pattern dimensionality, with other kinds of uncorrelated attributes for hand movement identification.
Identifiants
pubmed: 30682797
pii: s19030475
doi: 10.3390/s19030475
pmc: PMC6387220
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional
ID : SIP-20180356, SIP-20180637
Références
Sensors (Basel). 2018 Aug 02;18(8):
pubmed: 30072609
Sensors (Basel). 2018 Aug 22;18(9):
pubmed: 30135413
IEEE J Biomed Health Inform. 2015 Mar;19(2):478-485
pubmed: 25486650
J Neuroeng Rehabil. 2018 Mar 15;15(1):23
pubmed: 29544501
J Med Syst. 2015 Sep;39(9):88
pubmed: 26210898
J Neural Eng. 2015 Aug;12(4):046005
pubmed: 26028132
Clin Neurophysiol. 2006 Jun;117(6):1173-89
pubmed: 16516549
Biol Proced Online. 2006;8:11-35
pubmed: 16799694
Sensors (Basel). 2013 Sep 17;13(9):12431-66
pubmed: 24048337
Comput Biol Med. 1994 Jan;24(1):19-30
pubmed: 8205789
J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
pubmed: 11018445
J Biomech. 2012 Feb 2;45(3):555-61
pubmed: 22169134
IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):301-8
pubmed: 20007054
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5754-7
pubmed: 24111045
IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):572-80
pubmed: 25616053
J Med Eng Technol. 2016;40(4):149-54
pubmed: 27004618
Comput Intell Neurosci. 2018 Jan 24;2018:5276161
pubmed: 29606959
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1832-1842
pubmed: 28436879
Sensors (Basel). 2016 Aug 17;16(8):
pubmed: 27548165
Front Neurosci. 2017 Jul 11;11:379
pubmed: 28744189
IEEE Trans Neural Syst Rehabil Eng. 2016 Aug;24(8):837-46
pubmed: 26394431