A Flexible Platform of Electrochemically Functionalized Carbon Nanotubes for NADH Sensors.
NADH oxidation
amperometric sensor
caffeic acid
catechol
electrocatalysis
single-walled carbon nanotubes
spectroelectrochemistry
voltabsorptometric sensor
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
26 Jan 2019
26 Jan 2019
Historique:
received:
21
12
2018
revised:
18
01
2019
accepted:
24
01
2019
entrez:
30
1
2019
pubmed:
30
1
2019
medline:
30
1
2019
Statut:
epublish
Résumé
A flexible electrode system entirely constituted by single-walled carbon nanotubes (SWCNTs) has been proposed as the sensor platform for β-nicotinamide adenine dinucleotide (NADH) detection. The performance of the device, in terms of potential at which the electrochemical process takes place, significantly improves by electrochemical functionalization of the carbon-based material with a molecule possessing an o-hydroquinone residue, namely caffeic acid. Both the processes of SWCNT functionalization and NADH detection have been studied by combining electrochemical and spectroelectrochemical experiments, in order to achieve direct evidence of the electrode modification by the organic residues and to study the electrocatalytic activity of the resulting material in respect to functional groups present at the electrode/solution interface. Electrochemical measurements performed at the fixed potential of +0.30 V let us envision the possible use of the device as an amperometric sensor for NADH detection. Spectroelectrochemistry also demonstrates the effectiveness of the device in acting as a voltabsorptometric sensor for the detection of this same analyte by exploiting this different transduction mechanism, potentially less prone to the possible presence of interfering species.
Identifiants
pubmed: 30691171
pii: s19030518
doi: 10.3390/s19030518
pmc: PMC6386930
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Ministerio de Economía y Competitividad
ID : CTQ2017-83935-R-AEI/FEDERUE
Références
J Biotechnol. 2002 Feb;82(4):371-92
pubmed: 11996217
Bioelectrochemistry. 2002 May 15;56(1-2):117-22
pubmed: 12009456
Biotechnol Appl Biochem. 2003 Feb;37(Pt 1):45-50
pubmed: 12578551
Biosens Bioelectron. 2004 May 15;19(10):1131-8
pubmed: 15046743
J Photochem Photobiol B. 2005 Nov 1;81(2):76-83
pubmed: 16125965
Anal Bioanal Chem. 2006 Jun;385(3):452-68
pubmed: 16568294
Anal Chem. 1975 Jul;47(8):1337-43
pubmed: 167612
Trends Analyt Chem. 2008;27(7):619-626
pubmed: 19122842
Bioelectrochemistry. 2009 Sep;76(1-2):126-34
pubmed: 19608463
Chem Soc Rev. 2009 Aug;38(8):2214-30
pubmed: 19623345
Chem Soc Rev. 2012 Mar 21;41(6):2122-34
pubmed: 22278386
Chem Rev. 2012 Nov 14;112(11):6027-53
pubmed: 22889102
Anal Bioanal Chem. 2013 Apr;405(11):3593-602
pubmed: 23407809
J Am Chem Soc. 1975 Sep 3;97(18):5083-92
pubmed: 240879
Anal Chem. 2015 Jun 16;87(12):6233-9
pubmed: 25989247
Phys Chem Chem Phys. 2016 Sep 29;18(38):26404-26411
pubmed: 27711627
Anal Chem. 2017 Feb 7;89(3):1815-1822
pubmed: 28208243
Talanta. 2019 Apr 1;195:815-821
pubmed: 30625623