Mechanisms of sympathetic regulation during Apnea.
Breath-holding
chemoreflex
hypoxia
sympathetic activity
Journal
Physiological reports
ISSN: 2051-817X
Titre abrégé: Physiol Rep
Pays: United States
ID NLM: 101607800
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
14
12
2018
accepted:
26
12
2018
entrez:
30
1
2019
pubmed:
30
1
2019
medline:
17
4
2020
Statut:
ppublish
Résumé
Volitional Apnea produces a robust peak sympathetic response through several interacting mechanisms. However, the specific contribution of each mechanism has not been elucidated. Muscle sympathetic activity was collected in participants (n = 10; 24 ± 3 years) that performed four maximal volitional apneas aimed at isolating lung-stretch (mechanical) and chemoreflex drive: (Ainslie and Duffin ) end-expiratory breath-hold, (Ainslie et al. ) end-inspiratory breath-hold, (Alpher et al. ) prehyperventilation breath-hold, and (Andersson and Schagatay ) prehyperoxia breath-hold. A final repeated rebreathe breath-hold protocol was performed to measure the peak sympathetic response during successive breath-holds at increasing chemoreflex stress. Finally, the influence of dynamic ventilation was assessed through asphyxic rebreathe. Muscle sympathetic activity was calculated as the change in burst frequency (burst/min), burst incidence (burst/100 heart-beats), and amplitude (au) between baseline and prevolitional breakpoint. Rebreathe was analyzed at similar chemoreflex stress as inspiratory breath-hold. All maneuvers increased muscle sympathetic activity compared to baseline (P < 0.01). However, prehyperoxia exhibited a smaller increase (+22.18 ± 9.13 burst/min; +25.52 ± 11.7 burst/100 heart-beats) compared to inspiratory, expiratory, and prehyperventilation breath-holds. At similar chemoreflex strain, rebreathe sympathetic activity was blunted compared to inspiratory breath-hold (P < 0.01). Finally, muscle sympathetic activity was not different between the repeated rebreathe trials, despite elevated chemoreflex stress and lower breath-hold duration with each subsequent breath-hold. We have demonstrated an obligatory role of the peripheral, but not central, chemoreflex (prehyperventilation vs. prehyperoxia) in producing peak sympathetic responses. At similar chemoreflex stresses the act of dynamic ventilation, but not static lung stretch per se, blunts muscle sympathetic activity. Finally, similar peak sympathetic responses during successive repeated breath-holds suggest a sympathetic ceiling may exist.
Identifiants
pubmed: 30693670
doi: 10.14814/phy2.13991
pmc: PMC6349657
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13991Subventions
Organisme : CIHR
ID : GSD-146252
Pays : Canada
Informations de copyright
© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Références
Acta Physiol Scand. 1972 Jan;84(1):65-81
pubmed: 5029385
Exp Physiol. 2013 Feb;98(2):405-14
pubmed: 22923230
J Appl Physiol (1985). 1986 Sep;61(3):1149-52
pubmed: 3759755
J Appl Physiol (1985). 2006 Jan;100(1):266-73
pubmed: 16123207
Compr Physiol. 2012 Jan;2(1):141-219
pubmed: 23728973
J Physiol. 1961 Dec;159:222-37
pubmed: 13891144
J Physiol. 1985 Aug;365:181-96
pubmed: 4032310
Respir Physiol. 1994 Aug;97(3):323-32
pubmed: 7973136
J Appl Physiol (1985). 1994 Nov;77(5):2360-5
pubmed: 7868456
Hypertension. 2009 Apr;53(4):719-24
pubmed: 19255361
Respir Physiol Neurobiol. 2013 Sep 15;188(3):233-56
pubmed: 23722066
Clin Auton Res. 2010 Dec;20(6):371-4
pubmed: 20680386
J Neurophysiol. 1961 Nov;24:561-8
pubmed: 14448948
Undersea Hyperb Med. 1998 Spring;25(1):21-5
pubmed: 9566083
Compr Physiol. 2012 Jan;2(1):221-54
pubmed: 23728974
J Neurophysiol. 2017 Nov 1;118(5):2914-2924
pubmed: 28835525
J Appl Physiol (1985). 2002 Sep;93(3):882-6
pubmed: 12183481
Respir Physiol Neurobiol. 2017 Aug;242:8-11
pubmed: 28288844
Clin Auton Res. 2010 Apr;20(2):57-63
pubmed: 19820987
J Appl Physiol (1985). 2001 Apr;90(4):1516-22
pubmed: 11247954
J Appl Physiol (1985). 1995 Jul;79(1):205-13
pubmed: 7559221
Anesthesiology. 1960 Nov-Dec;21:604-14
pubmed: 13698175
J Appl Physiol. 1954 Mar;6(9):539-45
pubmed: 13152037
Exp Physiol. 2016 Dec 1;101(12):1517-1527
pubmed: 27615115
Acta Physiol Scand. 1968 Sep-Oct;74(1):96-108
pubmed: 4235387
Auton Neurosci. 2011 Oct 28;164(1-2):74-81
pubmed: 21641877
J Appl Physiol (1985). 2004 Aug;97(2):635-40
pubmed: 15075300
J Auton Nerv Syst. 1995 Jun 25;53(2-3):148-56
pubmed: 7560751
Physiol Rev. 1994 Jul;74(3):543-94
pubmed: 8036247
J Auton Nerv Syst. 1995 Jun 25;53(2-3):137-47
pubmed: 7560750
Am J Physiol Regul Integr Comp Physiol. 2009 May;296(5):R1473-95
pubmed: 19211719
Respir Physiol. 2000 Jul;121(2-3):147-62
pubmed: 10963771
J Appl Physiol (1985). 1989 Nov;67(5):2095-100
pubmed: 2513315
J Appl Physiol (1985). 2008 Jan;104(1):205-11
pubmed: 17991789
Am J Physiol Regul Integr Comp Physiol. 2009 Feb;296(2):R402-10
pubmed: 19091913
J Appl Physiol (1985). 2010 Dec;109(6):1728-35
pubmed: 20864558
Physiol Rep. 2019 Jan;7(2):e13991
pubmed: 30693670
Auton Neurosci. 2010 Aug 25;156(1-2):138-43
pubmed: 20627720
Adv Physiol Educ. 2015 Sep;39(3):223-31
pubmed: 26330043
Exp Physiol. 2015 Sep;100(9):1018-29
pubmed: 26132990
Circ Res. 1990 Jul;67(1):130-41
pubmed: 2364488
Exp Physiol. 2018 May 1;103(5):635-651
pubmed: 29512224
J Appl Physiol (1985). 1989 Nov;67(5):2101-6
pubmed: 2513316
Circ Res. 1993 Feb;72(2):440-54
pubmed: 8418993
Am J Physiol Regul Integr Comp Physiol. 2010 Nov;299(5):R1407-14
pubmed: 20826706
J Physiol. 2001 Feb 15;531(Pt 1):165-70
pubmed: 11179400
Exp Physiol. 2006 Jan;91(1):1-15
pubmed: 16272264
J Physiol. 2009 Oct 15;587(Pt 20):4987-99
pubmed: 19703962
Am J Physiol. 1965 Mar;208:436-50
pubmed: 14264731