An ultra-small few-layer MoS


Journal

Dalton transactions (Cambridge, England : 2003)
ISSN: 1477-9234
Titre abrégé: Dalton Trans
Pays: England
ID NLM: 101176026

Informations de publication

Date de publication:
26 Mar 2019
Historique:
pubmed: 30 1 2019
medline: 30 1 2019
entrez: 30 1 2019
Statut: ppublish

Résumé

Rational fabrication of anode electrodes for sodium-ion batteries remains a challenge due to the problem of sluggish Na+ diffusion kinetics, large volume expansion etc. Significant efforts, such as fabricating carbon composites and novel nanostructures, have been devoted to the development of anode materials. Herein, an ultra-small few-layer MoS2 nanostructure confined on a hierarchical porous carbon fiber composite was synthesized through the nanocasting route using a novel hierarchical porous carbon fiber as the template. As an anode material, the composite displays outstanding electrochemical performance for sodium-ion batteries. For instance, it delivers high reversible capacities (491 mA h g-1 after 50 cycles at 0.1 A g-1), high rate performance (387 mA h g-1 at 2 A g-1) and long-term cycling stability (234 mA h g-1 at 1 A g-1 after 3000 cycles). Note that it shows one of the best long-term cycling properties reported to date for MoS2-based anode materials for sodium-ion batteries. This regulation strategy may offer new insights into the fabrication of high-performance anode materials for sodium-ion batteries.

Identifiants

pubmed: 30694279
doi: 10.1039/c8dt04744h
doi:

Types de publication

Journal Article

Langues

eng

Pagination

4149-4156

Auteurs

Lingxing Zeng (L)

Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China. qrqian@fjnu.edu.cn cqhuar@126.com.

Classifications MeSH