Accessible molecular phylogenomics at no cost: obtaining 14 new mitogenomes for the ant subfamily Pseudomyrmecinae from public data.

Ant evolutionary biology Bioinformatics Data mining Mitogenomics Next Generation Sequencing Phylogenomics Pseudomyrmecinae Public data

Journal

PeerJ
ISSN: 2167-8359
Titre abrégé: PeerJ
Pays: United States
ID NLM: 101603425

Informations de publication

Date de publication:
2019
Historique:
received: 07 11 2018
accepted: 10 12 2018
entrez: 31 1 2019
pubmed: 31 1 2019
medline: 31 1 2019
Statut: epublish

Résumé

The advent of Next Generation Sequencing has reduced sequencing costs and increased genomic projects from a huge amount of organismal taxa, generating an unprecedented amount of genomic datasets publicly available. Often, only a tiny fraction of outstanding relevance of the genomic data produced by researchers is used in their works. This fact allows the data generated to be recycled in further projects worldwide. The assembly of complete mitogenomes is frequently overlooked though it is useful to understand evolutionary relationships among taxa, especially those presenting poor mtDNA sampling at the level of genera and families. This is exactly the case for ants (Hymenoptera:Formicidae) and more specifically for the subfamily Pseudomyrmecinae, a group of arboreal ants with several cases of convergent coevolution without any complete mitochondrial sequence available. In this work, we assembled, annotated and performed comparative genomics analyses of 14 new complete mitochondria from Pseudomyrmecinae species relying solely on public datasets available from the Sequence Read Archive (SRA). We used all complete mitogenomes available for ants to study the gene order conservation and also to generate two phylogenetic trees using both (i) concatenated set of 13 mitochondrial genes and (ii) the whole mitochondrial sequences. Even though the tree topologies diverged subtly from each other (and from previous studies), our results confirm several known relationships and generate new evidences for sister clade classification inside Pseudomyrmecinae clade. We also performed a synteny analysis for Formicidae and identified possible sites in which nucleotidic insertions happened in mitogenomes of pseudomyrmecine ants. Using a data mining/bioinformatics approach, the current work increased the number of complete mitochondrial genomes available for ants from 15 to 29, demonstrating the unique potential of public databases for mitogenomics studies. The wide applications of mitogenomes in research and presence of mitochondrial data in different public dataset types makes the "no budget mitogenomics" approach ideal for comprehensive molecular studies, especially for subsampled taxa.

Identifiants

pubmed: 30697483
doi: 10.7717/peerj.6271
pii: 6271
pmc: PMC6348091
doi:

Types de publication

Journal Article

Langues

eng

Pagination

e6271

Déclaration de conflit d'intérêts

The authors declare there are no competing interests.

Références

Philos Trans R Soc Lond B Biol Sci. 2008 Dec 27;363(1512):4013-21
pubmed: 18852108
Nucleic Acids Res. 2012 Jan;40(Database issue):D54-6
pubmed: 22009675
Nucleic Acids Res. 2008 Sep;36(16):e105
pubmed: 18660515
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Mitochondrial DNA A DNA Mapp Seq Anal. 2016 Sep;27(5):3378-80
pubmed: 25703846
Nature. 2010 Feb 25;463(7284):1079-83
pubmed: 20147900
Nat Rev Genet. 2016 May 17;17(6):333-51
pubmed: 27184599
BMC Genomics. 2011 Aug 08;12:402
pubmed: 21824423
Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3
pubmed: 18792934
Nat Methods. 2012 May 30;9(6):523-4
pubmed: 22669646
Trends Genet. 2008 Nov;24(11):539-51
pubmed: 18819722
Brief Funct Genomics. 2016 Jan;15(1):47-54
pubmed: 26117139
Science. 2006 Apr 7;312(5770):101-4
pubmed: 16601190
BMC Genomics. 2012 Jan 03;13:1
pubmed: 22214261
Mol Ecol Resour. 2019 Sep;19(5):1230-1239
pubmed: 31070854
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18172-7
pubmed: 17079492
Bioinformatics. 2012 Feb 15;28(4):464-9
pubmed: 22199388
Front Biosci (Landmark Ed). 2017 Jan 1;22(5):873-887
pubmed: 27814652
Zootaxa. 2017 Feb 06;4227(4):zootaxa.4227.4.3
pubmed: 28187564
Trends Genet. 2008 Mar;24(3):133-41
pubmed: 18262675
Int J Legal Med. 2004 Feb;118(1):14-8
pubmed: 14593483
PLoS One. 2015 Sep 17;10(9):e0138446
pubmed: 26379155
Anim Genet. 2017 Jun;48(3):287-294
pubmed: 28111759
Mol Phylogenet Evol. 2016 May;98:57-62
pubmed: 26860338
Sci Rep. 2018 Apr 18;8(1):6158
pubmed: 29670192
Mol Biol Evol. 2015 Sep;32(9):2302-16
pubmed: 25957318
Genome Biol Evol. 2017 Jul 1;9(7):1873-1879
pubmed: 28854599
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W43-6
pubmed: 17452344
Genome Biol Evol. 2014 Dec 04;6(12):3326-43
pubmed: 25480682
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2584-2589
pubmed: 29531050
Mol Phylogenet Evol. 2013 Nov;69(2):313-9
pubmed: 22982435
Mol Biol Evol. 2009 Jul;26(7):1607-17
pubmed: 19359443
BMC Genomics. 2014 Jun 12;15:467
pubmed: 24923674
Genome. 2016 Jan;59(1):59-74
pubmed: 26731510
Nucleic Acids Res. 2018 Jan 4;46(D1):D48-D51
pubmed: 29190397
J Insect Sci. 2017 Jan 1;17(2):
pubmed: 28931158
Mol Phylogenet Evol. 2018 Dec;129:138-148
pubmed: 29920335
Mol Phylogenet Evol. 2005 Mar;34(3):469-79
pubmed: 15683922
BMC Genomics. 2014;15 Suppl 3:S2
pubmed: 25077682
PeerJ. 2015 Nov 19;3:e1403
pubmed: 26618080
BMC Evol Biol. 2010 Oct 07;10:300
pubmed: 20929580
Mol Biol Rep. 2012 Mar;39(3):2767-72
pubmed: 21681429
Nucleic Acids Res. 2017 Feb 28;45(4):e18
pubmed: 28204566
Sci Rep. 2018 Jun 12;8(1):8969
pubmed: 29895902
Gene. 2016 Feb 15;577(2):202-8
pubmed: 26639990
Brief Bioinform. 2013 Mar;14(2):193-202
pubmed: 22445902
Gene. 2007 May 1;392(1-2):206-20
pubmed: 17321076
PLoS One. 2014 May 14;9(5):e97117
pubmed: 24828084
Nature. 2005 Sep 15;437(7057):376-80
pubmed: 16056220
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Mol Phylogenet Evol. 2018 Nov;128:1-11
pubmed: 30055354
Bioinformatics. 1998;14(9):817-8
pubmed: 9918953
Bioinformatics. 2013 May 1;29(9):1210-1
pubmed: 23471301
Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(1):764-5
pubmed: 24845452
Mol Phylogenet Evol. 2015 Mar;84:34-43
pubmed: 25542648
Bioinformatics. 2017 Sep 15;33(18):2914-2923
pubmed: 28535296
Proc Biol Sci. 2017 Mar 15;284(1850):
pubmed: 28298350
Nat Commun. 2016 Aug 25;7:12679
pubmed: 27557866
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
Nucleic Acids Res. 2014 Dec 16;42(22):e166
pubmed: 25294837
Mol Biol Evol. 2017 Mar 1;34(3):589-597
pubmed: 28025274
PLoS One. 2012;7(11):e47450
pubmed: 23185239
BMC Evol Biol. 2015 Dec 04;15:271
pubmed: 26637372
Genome Biol. 2011;12(2):R18
pubmed: 21338519
Trends Genet. 2014 Sep;30(9):418-26
pubmed: 25108476
Nucleic Acids Res. 2013 Jul;41(13):e129
pubmed: 23661685
Mol Biol Rep. 2014 Mar;41(3):1179-87
pubmed: 24496854
Genetics. 1993 Jan;133(1):97-117
pubmed: 8417993
Evolution. 1966 Sep;20(3):249-275
pubmed: 28562970
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
Int Rev Cytol. 1992;141:173-216
pubmed: 1452431
Genome Res. 2009 Jun;19(6):1117-23
pubmed: 19251739
PLoS One. 2013 Dec 23;8(12):e85024
pubmed: 24376861
Conserv Biol. 2006 Aug;20(4):1026-33
pubmed: 16922219
PLoS One. 2013 Jul 16;8(7):e69504
pubmed: 23874967
Heredity (Edinb). 2018 Apr;120(4):296-309
pubmed: 29180719
Trends Genet. 2013 Oct;29(10):593-9
pubmed: 23972387
OMICS. 2006 Summer;10(2):105-13
pubmed: 16901214
Proc Biol Sci. 2015 Nov 22;282(1819):
pubmed: 26582029
Sci Rep. 2017 Mar 22;7:44585
pubmed: 28327635
Mol Phylogenet Evol. 2003 Jan;26(1):121-38
pubmed: 12470944

Auteurs

Gabriel A Vieira (GA)

Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

Francisco Prosdocimi (F)

Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

Classifications MeSH