Glycosaminoglycan Compositional Analysis of Relevant Tissues in Zika Virus Pathogenesis and in Vitro Evaluation of Heparin as an Antiviral against Zika Virus Infection.
Aedes
/ metabolism
Animals
Antiviral Agents
/ pharmacology
Cattle
Chlorocebus aethiops
Dengue
/ drug therapy
Dengue Virus
/ pathogenicity
Eye
/ drug effects
Fetus
/ drug effects
Glycosaminoglycans
/ chemistry
Heparitin Sulfate
/ chemistry
Humans
In Vitro Techniques
Mosquito Vectors
/ virology
Neural Stem Cells
/ cytology
Vero Cells
Virus Internalization
Virus Replication
Zika Virus
/ pathogenicity
Zika Virus Infection
/ drug therapy
Journal
Biochemistry
ISSN: 1520-4995
Titre abrégé: Biochemistry
Pays: United States
ID NLM: 0370623
Informations de publication
Date de publication:
26 02 2019
26 02 2019
Historique:
pubmed:
31
1
2019
medline:
9
11
2019
entrez:
31
1
2019
Statut:
ppublish
Résumé
Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.
Identifiants
pubmed: 30698412
doi: 10.1021/acs.biochem.8b01267
pmc: PMC7686953
mid: NIHMS1635514
doi:
Substances chimiques
Antiviral Agents
0
Glycosaminoglycans
0
Heparitin Sulfate
9050-30-0
Types de publication
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1155-1166Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK111958
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL125371
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS088496
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA231074
Pays : United States
Références
Bio Protoc. 2017 Sep 5;7(17):
pubmed: 29075656
N Engl J Med. 2016 Jun 2;374(22):2195-8
pubmed: 27074370
Biol Rev Camb Philos Soc. 2013 Nov;88(4):928-43
pubmed: 23551941
Emerg Infect Dis. 2017 Jul;23(7):1110-1117
pubmed: 28430564
Antiviral Res. 2017 Apr;140:13-17
pubmed: 28063994
Neuropsychol Rev. 2010 Dec;20(4):327-48
pubmed: 21042938
JAMA Ophthalmol. 2016 May 1;134(5):529-535
pubmed: 26865554
Cell Stem Cell. 2016 May 5;18(5):587-90
pubmed: 26952870
Biochemistry. 1990 Mar 13;29(10):2611-7
pubmed: 2334685
Microbiol Mol Biol Rev. 2013 Mar;77(1):144-56
pubmed: 23471620
Sci Rep. 2017 Nov 1;7(1):14883
pubmed: 29093521
Antiviral Res. 2017 Jul;143:186-194
pubmed: 28457855
Commun Integr Biol. 2011 Mar;4(2):150-8
pubmed: 21655428
Acc Chem Res. 2004 Jul;37(7):431-8
pubmed: 15260505
Biochem J. 2011 Sep 15;438(3):475-83
pubmed: 21663594
J Virol. 2009 Oct;83(20):10384-94
pubmed: 19656873
Molecules. 2015 Feb 19;20(3):3527-48
pubmed: 25706756
Exp Eye Res. 2013 May;110:1-9
pubmed: 23410824
Pharmaceuticals (Basel). 2017 May 04;10(2):
pubmed: 28471403
Glycoconj J. 2018 Feb;35(1):119-128
pubmed: 29305777
Lancet. 2016 Jan 16;387(10015):228
pubmed: 26775125
JAMA Ophthalmol. 2016 May 1;134(5):535-536
pubmed: 26865476
J Infect Dis. 2017 Dec 16;216(suppl_10):S935-S944
pubmed: 29267925
Hematol Transfus Cell Ther. 2018 Jul-Sep;40(3):250-254
pubmed: 30128434
Biochem J. 1984 Mar 15;218(3):725-32
pubmed: 6721831
J Biol Chem. 1988 Sep 15;263(26):13090-6
pubmed: 3417651
PLoS Negl Trop Dis. 2015 Oct 20;9(10):e0004139
pubmed: 26484530
Science. 2016 Apr 22;352(6284):467-70
pubmed: 27033547
J Gen Virol. 2011 Jun;92(Pt 6):1332-1342
pubmed: 21325483
Nat Med. 1997 Aug;3(8):866-71
pubmed: 9256277
Biochemistry. 2017 Feb 28;56(8):1151-1162
pubmed: 28151637
Prog Retin Eye Res. 2002 Sep;21(5):429-47
pubmed: 12207944
Glycoconj J. 2017 Oct;34(5):643-649
pubmed: 28752383
BMC Ophthalmol. 2017 Nov 25;17(1):212
pubmed: 29178851
MMWR Morb Mortal Wkly Rep. 2018 Aug 10;67(31):858-867
pubmed: 30091967
Indian J Ophthalmol. 2018 Feb;66(2):190-194
pubmed: 29380756
J Biol Chem. 2007 Aug 31;282(35):25376-84
pubmed: 17597060
Carbohydr Res. 2002 Nov 19;337(21-23):2239-43
pubmed: 12433488
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):7117-7122
pubmed: 29915057