Theta/delta coupling across cortical laminae contributes to semantic cognition.
cross-frequency coupling
delta rhythm
semantic processing
theta rhythm
Journal
Journal of neurophysiology
ISSN: 1522-1598
Titre abrégé: J Neurophysiol
Pays: United States
ID NLM: 0375404
Informations de publication
Date de publication:
01 04 2019
01 04 2019
Historique:
pubmed:
31
1
2019
medline:
19
2
2020
entrez:
31
1
2019
Statut:
ppublish
Résumé
Rhythmic activity in populations of neurons is associated with cognitive and motor function. Our understanding of the neuronal mechanisms underlying these core brain functions has benefitted from demonstrations of cellular, synaptic, and network phenomena, leading to the generation of discrete rhythms at the local network level. However, discrete frequencies of rhythmic activity rarely occur alone. Despite this, little is known about why multiple rhythms are generated together or what mechanisms underlie their interaction to promote brain function. One overarching theory is that different temporal scales of rhythmic activity correspond to communication between brain regions separated by different spatial scales. To test this, we quantified the cross-frequency interactions between two dominant rhythms-theta and delta activity-manifested during magnetoencephalography recordings of subjects performing a word-pair semantic decision task. Semantic processing has been suggested to involve the formation of functional links between anatomically disparate neuronal populations over a range of spatial scales, and a distributed network was manifest in the profile of theta-delta coupling seen. Furthermore, differences in the pattern of theta-delta coupling significantly correlated with semantic outcome. Using an established experimental model of concurrent delta and theta rhythms in neocortex, we show that these outcome-dependent dynamics could be reproduced in a manner determined by the strength of cholinergic neuromodulation. Theta-delta coupling correlated with discrete neuronal activity motifs segregated by the cortical layer, neuronal intrinsic properties, and long-range axonal targets. Thus, the model suggested that local, interlaminar neocortical theta-delta coupling may serve to coordinate both cortico-cortical and cortico-subcortical computations during distributed network activity. NEW & NOTEWORTHY Here, we show, for the first time, that a network of spatially distributed brain regions can be revealed by cross-frequency coupling between delta and theta frequencies in subjects using magnetoencephalography recording during a semantic decision task. A biological model of this cross-frequency coupling suggested an interlaminar, cell-specific division of labor within the neocortex may serve to route the flow of cortico-cortical and cortico-subcortical information to promote such spatially distributed, functional networks.
Identifiants
pubmed: 30699059
doi: 10.1152/jn.00686.2018
pmc: PMC6485732
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1150-1161Subventions
Organisme : Wellcome Trust
ID : 098352
Pays : United Kingdom
Organisme : NINDS NIH HHS
ID : R01 NS044133
Pays : United States
Références
Neural Comput. 1995 Sep;7(5):889-904
pubmed: 7584891
Trends Cogn Sci. 2014 Jun;18(6):300-9
pubmed: 24630166
Cereb Cortex. 2009 Dec;19(12):2767-96
pubmed: 19329570
Trends Cogn Sci. 2012 Jul;16(7):390-8
pubmed: 22682813
Clin Neurophysiol. 2004 Aug;115(8):1821-35
pubmed: 15261861
Nat Rev Neurosci. 2017 Jan;18(1):42-55
pubmed: 27881854
Nature. 1995 Nov 2;378(6552):75-8
pubmed: 7477292
Spat Vis. 2000;13(2-3):137-46
pubmed: 11198227
Neuron. 2015 Dec 16;88(6):1253-1267
pubmed: 26671462
Neuron. 2013 Dec 4;80(5):1277-89
pubmed: 24239123
Cereb Cortex. 1993 Jan-Feb;3(1):69-78
pubmed: 8439740
Brain Lang. 2006 Jun;97(3):279-93
pubmed: 16343606
Phys Med Biol. 1999 Feb;44(2):423-40
pubmed: 10070792
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17058-62
pubmed: 23011798
Neuroimage. 2006 May 1;30(4):1414-32
pubmed: 16413796
Clin Neurophysiol. 2007 Mar;118(3):645-68
pubmed: 17223380
Clin Neurophysiol. 2001 Aug;112(8):1553-61
pubmed: 11459696
Cereb Cortex. 2011 May;21(5):1066-75
pubmed: 20851853
Electroencephalogr Clin Neurophysiol. 1994 Dec;91(6):428-41
pubmed: 7529682
Nat Neurosci. 2004 Mar;7(3):302-7
pubmed: 14983184
IEEE Trans Biomed Eng. 1997 Sep;44(9):867-80
pubmed: 9282479
Cortex. 2013 Mar;49(3):611-25
pubmed: 23260615
J Cogn Neurosci. 2010 Jun;22(6):1083-94
pubmed: 19583477
Neuron. 2014 Sep 3;83(5):1185-99
pubmed: 25132467
PLoS One. 2014 Jul 09;9(7):e101042
pubmed: 25007074
J Neurophysiol. 2005 Sep;94(3):1904-11
pubmed: 15901760
Trends Cogn Sci. 2012 Dec;16(12):606-17
pubmed: 23141428
Curr Opin Neurobiol. 2015 Apr;31:51-61
pubmed: 25212583
Nat Rev Neurosci. 2007 Dec;8(12):976-87
pubmed: 18026167
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8719-24
pubmed: 19433790
J Neurosci. 2013 Jun 26;33(26):10750-61
pubmed: 23804097
Neuroimage. 2006 Aug 15;32(2):978-87
pubmed: 16843012
Neuron. 2005 Sep 15;47(6):907-18
pubmed: 16157284
Neuron. 2010 Jul 29;67(2):308-20
pubmed: 20670837
Psychol Rev. 2010 Oct;117(4):1113-43
pubmed: 20822291
Brain Topogr. 2016 Jan;29(1):13-26
pubmed: 26318848
Trends Neurosci. 2015 Nov;38(11):725-740
pubmed: 26549886
Elife. 2016 Sep 19;5:
pubmed: 27642784
J Neurosci. 1996 May 1;16(9):3089-96
pubmed: 8622138
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15085-90
pubmed: 23980180
Nature. 1989 Mar 23;338(6213):334-7
pubmed: 2922061
Brain. 2009 Sep;132(Pt 9):2593-608
pubmed: 19506072
Front Neurosci. 2008 Dec 15;2(2):145-54
pubmed: 19225587
Trends Cogn Sci. 2010 Apr;14(4):172-9
pubmed: 20171926
J Neurosci. 2011 Feb 16;31(7):2663-74
pubmed: 21325535
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
pubmed: 12883005
Trends Cogn Sci. 2010 Nov;14(11):506-15
pubmed: 20932795
PLoS One. 2017 Jan 11;12(1):e0169269
pubmed: 28076421
J Neurosci. 2012 Nov 21;32(47):16795-806
pubmed: 23175833
Neuron. 2015 Oct 7;88(1):220-35
pubmed: 26447583
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1867-72
pubmed: 10677548
Neuron. 2016 Apr 6;90(1):143-51
pubmed: 27021172
Front Integr Neurosci. 2013 Dec 05;7:83
pubmed: 24367301
Eur J Neurosci. 2002 Apr;15(8):1395-9
pubmed: 11994134
Cereb Cortex. 2010 Apr;20(4):826-36
pubmed: 19643810
Neuron. 2002 Dec 5;36(5):955-68
pubmed: 12467598
Neuroscience. 1998 Dec;87(3):541-50
pubmed: 9758221
Nat Neurosci. 2016 Jul;19(7):973-80
pubmed: 27273768
J Physiol. 2002 Sep 15;543(Pt 3):779-93
pubmed: 12231638
Nat Neurosci. 2012 Jan 08;15(3):470-6, S1-3
pubmed: 22231429
Int J Psychophysiol. 2001 Jan;39(2-3):241-8
pubmed: 11163901
Science. 2017 Nov 24;358(6366):1042-1046
pubmed: 29170233
Neuron. 2009 Oct 29;64(2):267-80
pubmed: 19874793
J Neurosci Methods. 2013 Oct 30;220(1):64-74
pubmed: 24012829