In vivo textural and morphometric analysis of placental development in healthy & growth-restricted pregnancies using magnetic resonance imaging.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
received:
12
04
2018
accepted:
16
01
2019
revised:
02
11
2018
pubmed:
1
2
2019
medline:
28
5
2020
entrez:
1
2
2019
Statut:
ppublish
Résumé
The objective of this study was to characterize structural changes in the healthy in vivo placenta by applying morphometric and textural analysis using magnetic resonance imaging (MRI), and to explore features that may be able to distinguish placental insufficiency in fetal growth restriction (FGR). Women with healthy pregnancies or pregnancies complicated by FGR underwent MRI between 20 and 40 weeks gestation. Measures of placental morphometry (volume, elongation, depth) and digital texture (voxel-wise geometric and signal-intensity analysis) were calculated from T2W MR images. We studied 66 pregnant women (32 healthy controls, 34 FGR); during the study period, placentas undergo significant increases in size; signal intensity remains relatively constant, however there is increasing variation in spatial arrangements, suggestive of progressive microstructural heterogeneity. In FGR, placental size is smaller, with great homogeneity of signal intensity and spatial arrangements. We report quantitative textural and morphometric changes in the in vivo placenta in healthy controls over the second half of pregnancy. These MRI features demonstrate important differences in placental development in the setting of placental insufficiency that relate to onset and severity of FGR, as well as neonatal outcome.
Sections du résumé
BACKGROUND
The objective of this study was to characterize structural changes in the healthy in vivo placenta by applying morphometric and textural analysis using magnetic resonance imaging (MRI), and to explore features that may be able to distinguish placental insufficiency in fetal growth restriction (FGR).
METHODS
Women with healthy pregnancies or pregnancies complicated by FGR underwent MRI between 20 and 40 weeks gestation. Measures of placental morphometry (volume, elongation, depth) and digital texture (voxel-wise geometric and signal-intensity analysis) were calculated from T2W MR images.
RESULTS
We studied 66 pregnant women (32 healthy controls, 34 FGR); during the study period, placentas undergo significant increases in size; signal intensity remains relatively constant, however there is increasing variation in spatial arrangements, suggestive of progressive microstructural heterogeneity. In FGR, placental size is smaller, with great homogeneity of signal intensity and spatial arrangements.
CONCLUSION
We report quantitative textural and morphometric changes in the in vivo placenta in healthy controls over the second half of pregnancy. These MRI features demonstrate important differences in placental development in the setting of placental insufficiency that relate to onset and severity of FGR, as well as neonatal outcome.
Identifiants
pubmed: 30700836
doi: 10.1038/s41390-019-0311-1
pii: 10.1038/s41390-019-0311-1
pmc: PMC6531319
mid: NIHMS1519103
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
974-981Subventions
Organisme : NCATS NIH HHS
ID : KL2 TR000076
Pays : United States
Organisme : NICHD NIH HHS
ID : K23 HD092585
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL116585
Pays : United States
Organisme : NICHD NIH HHS
ID : L40 HD089314
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD090257
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000075
Pays : United States
Références
Kim, C. J., Romero, R., Chaemsaithong, P. & Kim, J. S. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am. J. Obstet. Gynecol. 213(4 Suppl), S53–S69 (2015).
doi: 10.1016/j.ajog.2015.08.041
Gagnon, R. Placental insufficiency and its consequences. Eur. J. Obstet. Gynecol. Reprod. Biol. 110(Suppl 1), S99–S107 (2003).
doi: 10.1016/S0301-2115(03)00179-9
Morgan, T. K. Role of the placenta in preterm birth: a review. Am. J. Perinatol. 33, 258–266 (2016).
doi: 10.1055/s-0035-1570379
Wu, Y. W. & Colford, J. M. Jr. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284, 1417–1424 (2000).
doi: 10.1001/jama.284.11.1417
Mifsud, W. & Sebire, N. J. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn. Ther. 36, 117–128 (2014).
doi: 10.1159/000359969
Perrone, S., Tataranno, M. L., Negro, S., Longini, M., Toti, M. S. & Alagna, M. G. et al. Placental histological examination and the relationship with oxidative stress in preterm infants. Placenta 46, 72–78 (2016).
doi: 10.1016/j.placenta.2016.08.084
Di Cataldo, S. & Ficarra, E. Mining textural knowledge in biological images: applications, methods and trends. Comput. Struct. Biotechnol. J. 15, 56–67 (2017).
doi: 10.1016/j.csbj.2016.11.002
Sorensen, L., Igel, C., Liv Hansen, N., Osler, M., Lauritzen, M. & Rostrup, E. et al. Early detection of Alzheimer’s disease using MRI hippocampal texture. Hum. Brain Mapp. 37, 1148–1161 (2016).
doi: 10.1002/hbm.23091
Suoranta, S., Holli-Helenius, K., Koskenkorva, P., Niskanen, E., Kononen, M. & Aikia, M. et al. 3D texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS ONE 8, e69905 (2013).
doi: 10.1371/journal.pone.0069905
Chen, C. Y., Su, H. W., Pai, S. H., Hsieh, C. W., Jong, T. L. & Hsu, C. S. et al. Evaluation of placental maturity by the sonographic textures. Arch. Gynecol. Obstet. 284, 13–18 (2011).
doi: 10.1007/s00404-010-1555-5
Hadlock, F. P., Deter, R. L., Harrist, R. B. & Park, S. K. Estimating fetal age: computer-assisted analysis of multiple fetal growth parameters. Radiology 152, 497–501 (1984).
doi: 10.1148/radiology.152.2.6739822
Acharya, G., Wilsgaard, T., Berntsen, G. K., Maltau, J. M. & Kiserud, T. Reference ranges for serial measurements of blood velocity and pulsatility index at the intra-abdominal portion, and fetal and placental ends of the umbilical artery. Ultrasound Obstet. Gynecol. 26, 162–169 (2005).
doi: 10.1002/uog.1902
Acharya, G., Wilsgaard, T., Berntsen, G. K., Maltau, J. M. & Kiserud, T. Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy. Am. J. Obstet. Gynecol. 192, 937–944 (2005).
doi: 10.1016/j.ajog.2004.09.019
Andescavage, N., duPlessis, A., Metzler, M., Bulas, D., Vezina, G. & Jacobs, M. et al. In vivo assessment of placental and brain volumes in growth-restricted fetuses with and without fetal Doppler changes using quantitative 3D MRI. J. Perinatol. 37, 1278–1284 (2017).
doi: 10.1038/jp.2017.129
Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S. & Gee, J. C. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006).
doi: 10.1016/j.neuroimage.2006.01.015
Zou, K. H., Wells, W. M. 3rd, Kikinis, R. & Warfield, S. K. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat. Med. 23, 1259–1282 (2004).
doi: 10.1002/sim.1723
Alliez Pea. Point set processing. (eds Board C. E.). CGAL User and Reference Manual 2016. https://doc.cgal.org/latest/Manual/how_to_cite_cgal.html .
Kazhdan M., Bolitho, M. & Hoppe, H. Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing. p. 61-70(Eurographics Association Aire-la-Ville, Switzerland, Switzerland 2006).
Dahdouh, S. & Andescavage, N. & Yewale, S. & Yarish, A. & Lanham, D. & Bulas, D. et al. In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome. J Magn Reson Imaging 47, 449–458 (2018).
doi: 10.1002/jmri.25806
Ebbing, C., Rasmussen, S. & Kiserud, T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet. Gynecol. 30, 287–296 (2007).
doi: 10.1002/uog.4088
Baschat, A. A. & Gembruch, U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet. Gynecol. 21, 124–127 (2003).
doi: 10.1002/uog.20
Lane, P. W. Generalized linear models in soil science. Eur. J. Soil Sci. 53, 241–251 (2002).
doi: 10.1046/j.1365-2389.2002.00440.x
SAS. SAS system. 9.3 edn. (SAS Institute Inc., Cary, NC, July 2011).
Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).
doi: 10.1097/00001648-199001000-00010
Srinivasan GNaS, G. Statistical texture analysis proceedings of world academy of science. Eng. Technol. 36, 1264–1269 (2008).
Heinonen, S., Taipale, P. & Saarikoski, S. Weights of placentae from small-for-gestational age infants revisited. Placenta 22, 399–404 (2001).
doi: 10.1053/plac.2001.0630
Sanin, L. H., Lopez, S. R., Olivares, E. T., Terrazas, M. C., Silva, M. A. & Carrillo, M. L. Relation between birth weight and placenta weight. Biol. Neonate. 80, 113–117 (2001).
doi: 10.1159/000047129
Veerbeek, J. H., Nikkels, P. G., Torrance, H. L., Gravesteijn, J., Post Uiterweer, E. D. & Derks, J. B. et al. Placental pathology in early intrauterine growth restriction associated with maternal hypertension. Placenta 35, 696–701 (2014).
doi: 10.1016/j.placenta.2014.06.375
Parra-Saavedra, M., Crovetto, F., Triunfo, S., Savchev, S., Peguero, A. & Nadal, A. et al. Placental findings in late-onset SGA births without Doppler signs of placental insufficiency. Placenta 34, 1136–1141 (2013).
doi: 10.1016/j.placenta.2013.09.018
Burton, G. J., Woods, A. W., Jauniaux, E. & Kingdom, J. C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30, 473–482 (2009).
doi: 10.1016/j.placenta.2009.02.009
Howe, D., Wheeler, T. & Perring, S. Measurement of placental volume with real-time ultrasound in mid-pregnancy. J. Clin. Ultrasound 22, 77–83 (1994).
doi: 10.1002/jcu.1870220203
Hafner, E., Philipp, T., Schuchter, K., Dillinger-Paller, B., Philipp, K. & Bauer, P. Second-trimester measurements of placental volume by three-dimensional ultrasound to predict small-for-gestational-age infants. Ultrasound Obstet. Gynecol. 12, 97–102 (1998).
doi: 10.1046/j.1469-0705.1998.12020097.x
Farina, A. Systematic review on first trimester three-dimensional placental volumetry predicting small for gestational age infants. Prenat. Diagn. 36, 135–141 (2016).
doi: 10.1002/pd.4754
Schwartz, N., Mandel, D., Shlakhter, O., Coletta, J., Pessel, C. & Timor-Tritsch, I. E. et al. Placental morphologic features and chorionic surface vasculature at term are highly correlated with 3-dimensional sonographic measurements at 11 to 14 weeks. J. Ultrasound Med. 30, 1171–1178 (2011).
doi: 10.7863/jum.2011.30.9.1171
Schwartz, N., Coletta, J., Pessel, C., Feng, R., Timor-Tritsch, I. E. & Parry, S. et al. Novel 3-dimensional placental measurements in early pregnancy as predictors of adverse pregnancy outcomes. J. Ultrasound Med. 29, 1203–1212 (2010).
doi: 10.7863/jum.2010.29.8.1203
Schwartz, N., Wang, E. & Parry, S. Two-dimensional sonographic placental measurements in the prediction of small-for-gestational-age infants. Ultrasound Obstet. Gynecol. 40, 674–679 (2012).
doi: 10.1002/uog.11136
Radulescu, E., Ganeshan, B., Minati, L., Beacher, F. D., Gray, M. A. & Chatwin, C. et al. Gray matter textural heterogeneity as a potential in-vivo biomarker of fine structural abnormalities in Asperger syndrome. Pharm. J. 13, 70–79 (2013).
Radulescu, E., Ganeshan, B., Shergill, S. S., Medford, N., Chatwin, C. & Young, R. C. et al. Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia. Psychiatry Res. 223, 179–186 (2014).
doi: 10.1016/j.pscychresns.2014.05.014
Makanyanga, J., Ganeshan, B., Rodriguez-Justo, M., Bhatnagar, G., Groves, A. & Halligan, S. et al. MRI texture analysis (MRTA) of T2-weighted images in Crohn’s disease may provide information on histological and MRI disease activity in patients undergoing ileal resection. Eur. Radiol. 27, 589–597 (2017).
doi: 10.1007/s00330-016-4324-4
Brown, A. M., Nagala, S., McLean, M. A., Lu, Y., Scoffings, D. & Apte, A. et al. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magn. Reson Med. 75, 1708–1716 (2016).
doi: 10.1002/mrm.25743
Holli, K. K., Waljas, M., Harrison, L., Liimatainen, S., Luukkaala, T. & Ryymin, P. et al. Mild traumatic brain injury: tissue texture analysis correlated to neuropsychological and DTI findings. Acad. Radiol. 17, 1096–1102 (2010).
doi: 10.1016/j.acra.2010.04.009
Walker, M. G., Hindmarsh, P. C., Geary, M. & Kingdom, J. C. Sonographic maturation of the placenta at 30 to 34 weeks is not associated with second trimester markers of placental insufficiency in low-risk pregnancies. J. Obstet. Gynaecol. Can. 32, 1134–1139 (2010).
doi: 10.1016/S1701-2163(16)34736-3