A quantitative approach for measuring the reservoir of latent HIV-1 proviruses.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
02 2019
Historique:
received: 19 04 2018
accepted: 04 01 2019
pubmed: 1 2 2019
medline: 25 7 2019
entrez: 1 2 2019
Statut: ppublish

Résumé

A stable latent reservoir for HIV-1 in resting CD4

Identifiants

pubmed: 30700913
doi: 10.1038/s41586-019-0898-8
pii: 10.1038/s41586-019-0898-8
pmc: PMC6447073
mid: NIHMS1518047
doi:

Substances chimiques

DNA, Viral 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Pagination

120-125

Subventions

Organisme : NIAID NIH HHS
ID : R43 AI124996
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007445
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL146201
Pays : United States
Organisme : NIAID NIH HHS
ID : P30 AI027763
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI043222
Pays : United States
Organisme : NIDA NIH HHS
ID : R61 DA047022
Pays : United States
Organisme : NIH HHS
ID : UM1 AI12661
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI131374
Pays : United States
Organisme : NIAID NIH HHS
ID : UM1 AI126620
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI035042
Pays : United States
Organisme : NCRR NIH HHS
ID : UL1 RR025005
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI131306
Pays : United States
Organisme : NIAID NIH HHS
ID : UM1 AI126603
Pays : United States
Organisme : NIAID NIH HHS
ID : R44 AI124996
Pays : United States

Références

Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).
doi: 10.1126/science.278.5341.1295
Chun, T. W. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 94, 13193–13197 (1997).
doi: 10.1073/pnas.94.24.13193
Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).
doi: 10.1126/science.278.5341.1291
Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).
doi: 10.1038/nature11286
Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284–287 (2016).
doi: 10.1038/nature20583
Procopio, F. A. et al. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine 2, 874–883 (2015).
doi: 10.1016/j.ebiom.2015.06.019
Ho, Y. C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).
doi: 10.1016/j.cell.2013.09.020
Bruner, K. M. et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 22, 1043–1049 (2016).
doi: 10.1038/nm.4156
Imamichi, H. et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc. Natl Acad. Sci. USA 113, 8783–8788 (2016).
doi: 10.1073/pnas.1609057113
Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).
doi: 10.1038/nature00939
Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).
doi: 10.1093/emboj/cdg188
Finzi, D. et al. Latent infection of CD4
doi: 10.1038/8394
Crooks, A. M. et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. 212, 1361–1365 (2015).
doi: 10.1093/infdis/jiv218
Maldarelli, F. et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).
doi: 10.1126/science.1254194
Wagner, T. A. et al. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).
doi: 10.1126/science.1256304
Bui, J. K. et al. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog. 13, e1006283 (2017).
doi: 10.1371/journal.ppat.1006283
Lorenzi, J. C. et al. Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. Proc. Natl Acad. Sci. USA 113, E7908–E7916 (2016).
doi: 10.1073/pnas.1617789113
Hosmane, N. N. et al. Proliferation of latently infected CD4
doi: 10.1084/jem.20170193
Wang, Z. et al. Expanded cellular clones carrying replication-competent HIV-1 persist, wax, and wane. Proc. Natl Acad. Sci. USA 115, E2575–E2584 (2018).
doi: 10.1073/pnas.1720665115
Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900 (2009).
doi: 10.1038/nm.1972
Cohn, L. B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).
doi: 10.1016/j.cell.2015.01.020
Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).
doi: 10.1038/373123a0
Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).
doi: 10.1038/373117a0
Simonetti, F. R. et al. Clonally expanded CD4
doi: 10.1073/pnas.1522675113
Pollack, R. A. et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21, 494–506 (2017).
doi: 10.1016/j.chom.2017.03.008
Berry, C. C. et al. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics 28, 755–762 (2012).
doi: 10.1093/bioinformatics/bts004
Detels, R. et al. The multicenter AIDS Cohort Study, 1983 to … Public Health 126, 196–198 (2012).
doi: 10.1016/j.puhe.2011.11.013
Rose, P. P. & Korber, B. T. Detecting hypermutations in viral sequences with an emphasis on G→A hypermutation. Bioinformatics 16, 400–401 (2000).
doi: 10.1093/bioinformatics/16.4.400
Laird, G. M., Rosenbloom, D. I., Lai, J., Siliciano, R. F. & Siliciano, J. D. Measuring the frequency of latent HIV-1 in resting CD4
doi: 10.1007/978-1-4939-3046-3_16
Laird, G. M. et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 9, e1003398 (2013).
doi: 10.1371/journal.ppat.1003398
Rosenbloom, D. I. et al. Designing and interpreting limiting dilution assays: general principles and applications to the latent reservoir for human immunodeficiency virus-1. Open Forum Infect. Dis. 2, ofv123 (2015).
doi: 10.1093/ofid/ofv123
Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
doi: 10.1038/44385
Durand, C. M. et al. HIV-1 DNA is detected in bone marrow populations containing CD4
doi: 10.1093/infdis/jir884
Lewinski, M. K. et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79, 6610–6619 (2005).
doi: 10.1128/JVI.79.11.6610-6619.2005
Sherman, E. et al. INSPIIRED: a pipeline for quantitative analysis of sites of new DNA integration in cellular genomes. Mol. Ther. Methods Clin. Dev. 4, 39–49 (2017).
doi: 10.1016/j.omtm.2016.11.002

Auteurs

Katherine M Bruner (KM)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Molecular Biosciences, University of Texas, Austin, TX, USA.

Zheng Wang (Z)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Francesco R Simonetti (FR)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Alexandra M Bender (AM)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Kyungyoon J Kwon (KJ)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Srona Sengupta (S)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Emily J Fray (EJ)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Subul A Beg (SA)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Annukka A R Antar (AAR)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Katharine M Jenike (KM)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Lynn N Bertagnolli (LN)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Adam A Capoferri (AA)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Joshua T Kufera (JT)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Andrew Timmons (A)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Christopher Nobles (C)

Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

John Gregg (J)

Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Nikolas Wada (N)

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Ya-Chi Ho (YC)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.

Hao Zhang (H)

Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Joseph B Margolick (JB)

Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Joel N Blankson (JN)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Steven G Deeks (SG)

Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Frederic D Bushman (FD)

Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Janet D Siliciano (JD)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Gregory M Laird (GM)

Accelevir Diagnostics, Baltimore, MD, USA.

Robert F Siliciano (RF)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. rsiliciano@jhmi.edu.
Howard Hughes Medical Institute, Baltimore, MD, USA. rsiliciano@jhmi.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH