A quantitative approach for measuring the reservoir of latent HIV-1 proviruses.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
19
04
2018
accepted:
04
01
2019
pubmed:
1
2
2019
medline:
25
7
2019
entrez:
1
2
2019
Statut:
ppublish
Résumé
A stable latent reservoir for HIV-1 in resting CD4
Identifiants
pubmed: 30700913
doi: 10.1038/s41586-019-0898-8
pii: 10.1038/s41586-019-0898-8
pmc: PMC6447073
mid: NIHMS1518047
doi:
Substances chimiques
DNA, Viral
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Pagination
120-125Subventions
Organisme : NIAID NIH HHS
ID : R43 AI124996
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007445
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL146201
Pays : United States
Organisme : NIAID NIH HHS
ID : P30 AI027763
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI043222
Pays : United States
Organisme : NIDA NIH HHS
ID : R61 DA047022
Pays : United States
Organisme : NIH HHS
ID : UM1 AI12661
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI131374
Pays : United States
Organisme : NIAID NIH HHS
ID : UM1 AI126620
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI035042
Pays : United States
Organisme : NCRR NIH HHS
ID : UL1 RR025005
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI131306
Pays : United States
Organisme : NIAID NIH HHS
ID : UM1 AI126603
Pays : United States
Organisme : NIAID NIH HHS
ID : R44 AI124996
Pays : United States
Références
Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).
doi: 10.1126/science.278.5341.1295
Chun, T. W. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 94, 13193–13197 (1997).
doi: 10.1073/pnas.94.24.13193
Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).
doi: 10.1126/science.278.5341.1291
Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).
doi: 10.1038/nature11286
Borducchi, E. N. et al. Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature 540, 284–287 (2016).
doi: 10.1038/nature20583
Procopio, F. A. et al. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine 2, 874–883 (2015).
doi: 10.1016/j.ebiom.2015.06.019
Ho, Y. C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).
doi: 10.1016/j.cell.2013.09.020
Bruner, K. M. et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 22, 1043–1049 (2016).
doi: 10.1038/nm.4156
Imamichi, H. et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc. Natl Acad. Sci. USA 113, 8783–8788 (2016).
doi: 10.1073/pnas.1609057113
Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).
doi: 10.1038/nature00939
Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).
doi: 10.1093/emboj/cdg188
Finzi, D. et al. Latent infection of CD4
doi: 10.1038/8394
Crooks, A. M. et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. 212, 1361–1365 (2015).
doi: 10.1093/infdis/jiv218
Maldarelli, F. et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).
doi: 10.1126/science.1254194
Wagner, T. A. et al. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).
doi: 10.1126/science.1256304
Bui, J. K. et al. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog. 13, e1006283 (2017).
doi: 10.1371/journal.ppat.1006283
Lorenzi, J. C. et al. Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. Proc. Natl Acad. Sci. USA 113, E7908–E7916 (2016).
doi: 10.1073/pnas.1617789113
Hosmane, N. N. et al. Proliferation of latently infected CD4
doi: 10.1084/jem.20170193
Wang, Z. et al. Expanded cellular clones carrying replication-competent HIV-1 persist, wax, and wane. Proc. Natl Acad. Sci. USA 115, E2575–E2584 (2018).
doi: 10.1073/pnas.1720665115
Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900 (2009).
doi: 10.1038/nm.1972
Cohn, L. B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).
doi: 10.1016/j.cell.2015.01.020
Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).
doi: 10.1038/373123a0
Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).
doi: 10.1038/373117a0
Simonetti, F. R. et al. Clonally expanded CD4
doi: 10.1073/pnas.1522675113
Pollack, R. A. et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21, 494–506 (2017).
doi: 10.1016/j.chom.2017.03.008
Berry, C. C. et al. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics 28, 755–762 (2012).
doi: 10.1093/bioinformatics/bts004
Detels, R. et al. The multicenter AIDS Cohort Study, 1983 to … Public Health 126, 196–198 (2012).
doi: 10.1016/j.puhe.2011.11.013
Rose, P. P. & Korber, B. T. Detecting hypermutations in viral sequences with an emphasis on G→A hypermutation. Bioinformatics 16, 400–401 (2000).
doi: 10.1093/bioinformatics/16.4.400
Laird, G. M., Rosenbloom, D. I., Lai, J., Siliciano, R. F. & Siliciano, J. D. Measuring the frequency of latent HIV-1 in resting CD4
doi: 10.1007/978-1-4939-3046-3_16
Laird, G. M. et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 9, e1003398 (2013).
doi: 10.1371/journal.ppat.1003398
Rosenbloom, D. I. et al. Designing and interpreting limiting dilution assays: general principles and applications to the latent reservoir for human immunodeficiency virus-1. Open Forum Infect. Dis. 2, ofv123 (2015).
doi: 10.1093/ofid/ofv123
Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
doi: 10.1038/44385
Durand, C. M. et al. HIV-1 DNA is detected in bone marrow populations containing CD4
doi: 10.1093/infdis/jir884
Lewinski, M. K. et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79, 6610–6619 (2005).
doi: 10.1128/JVI.79.11.6610-6619.2005
Sherman, E. et al. INSPIIRED: a pipeline for quantitative analysis of sites of new DNA integration in cellular genomes. Mol. Ther. Methods Clin. Dev. 4, 39–49 (2017).
doi: 10.1016/j.omtm.2016.11.002