Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation.
Journal
IEEE journal of biomedical and health informatics
ISSN: 2168-2208
Titre abrégé: IEEE J Biomed Health Inform
Pays: United States
ID NLM: 101604520
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
pubmed:
1
2
2019
medline:
1
2
2020
entrez:
1
2
2019
Statut:
ppublish
Résumé
Systolic time intervals, such as the pre-ejection period (PEP), are important parameters for assessing cardiac contractility that can be measured non-invasively using seismocardiography (SCG). Recent studies have shown that specific points on accelerometer- and gyroscope-based SCG signals can be used for PEP estimation. However, the complex morphology and inter-subject variation of the SCG signal can make this assumption very challenging and increase the root mean squared error (RMSE) when these techniques are used to develop a global model. In this study, we compared gyroscope- and accelerometer-based SCG signals, individually and in combination, for estimating PEP to show the efficacy of these sensors in capturing valuable information regarding cardiovascular health. We extracted general time-domain features from all the axes of these sensors and developed global models using various regression techniques. In single-axis comparison of gyroscope and accelerometer, angular velocity signal around head to foot axis from the gyroscope provided the lowest RMSE of 12.63 ± 0.49 ms across all subjects. The best estimate of PEP, with a RMSE of 11.46 ± 0.32 ms across all subjects, was achieved by combining features from the gyroscope and accelerometer. Our global model showed 30% lower RMSE when compared to algorithms used in recent literature. Gyroscopes can provide better PEP estimation compared to accelerometers located on the mid-sternum. Global PEP estimation models can be improved by combining general time domain features from both sensors. This work can be used to develop a low-cost wearable heart-monitoring device and to generate a universal estimation model for systolic time intervals using a single- or multiple-sensor fusion.
Identifiants
pubmed: 30703050
doi: 10.1109/JBHI.2019.2895775
pmc: PMC6874489
mid: NIHMS1542715
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2365-2374Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL130619
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR002378
Pays : United States
Références
IEEE Trans Biomed Circuits Syst. 2016 Apr;10(2):280-8
pubmed: 25974943
Physiol Meas. 2009 Feb;30(2):169-85
pubmed: 19147897
J Magn Reson Imaging. 1999 Nov;10(5):861-9
pubmed: 10548800
IEEE J Biomed Health Inform. 2015 Jul;19(4):1414-27
pubmed: 25312966
Circulation. 1968 Feb;37(2):149-59
pubmed: 5640345
Psychophysiology. 1979 Nov;16(6):546-53
pubmed: 229507
Cardiovasc Eng Technol. 2016 Jun;7(2):118-25
pubmed: 27048269
IEEE Eng Med Biol Mag. 1989;8(1):35-8
pubmed: 18238303
Sci Rep. 2017 Jul 28;7(1):6823
pubmed: 28754888
IEEE Trans Biomed Eng. 2017 Jun;64(6):1277-1286
pubmed: 27541330
J R Soc Interface. 2014 Oct 6;11(99):null
pubmed: 25142523
Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3801-4
pubmed: 23366756
J Natl Cancer Inst. 2007 Jan 17;99(2):147-57
pubmed: 17227998
Auton Neurosci. 2013 Nov;178(1-2):50-9
pubmed: 23664242
IEEE J Biomed Health Inform. 2018 Sep;22(5):1466-1475
pubmed: 29990006
Ann Biomed Eng. 2009 Mar;37(3):516-31
pubmed: 19142728
Circ Heart Fail. 2018 Jan;11(1):e004313
pubmed: 29330154
Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3954-7
pubmed: 18002865
J Cardiovasc Magn Reson. 2011 Jan 14;13:7
pubmed: 21235751
IEEE Trans Inf Technol Biomed. 2011 Nov;15(6):864-9
pubmed: 21843998
Nat Protoc. 2016 Jul;11(7):1264-79
pubmed: 27310265
Pacing Clin Electrophysiol. 2007 Dec;30(12):1476-81
pubmed: 18070301
Am J Cardiol. 1971 Apr;27(4):384-91
pubmed: 5572582