Topological non-Hermitian origin of surface Maxwell waves.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
04 02 2019
04 02 2019
Historique:
received:
28
10
2018
accepted:
08
01
2019
entrez:
6
2
2019
pubmed:
6
2
2019
medline:
6
2
2019
Statut:
epublish
Résumé
Maxwell electromagnetism, describing the wave properties of light, was formulated 150 years ago. More than 60 years ago it was shown that interfaces between optical media (including dielectrics, metals, negative-index materials) can support surface electromagnetic waves, which now play crucial roles in plasmonics, metamaterials, and nano-photonics. Here we show that surface Maxwell waves at interfaces between homogeneous isotropic media described by real permittivities and permeabilities have a topological origin explained by the bulk-boundary correspondence. Importantly, the topological classification is determined by the helicity operator, which is generically non-Hermitian even in lossless optical media. The corresponding topological invariant, which determines the number of surface modes, is a [Formula: see text] number (or a pair of [Formula: see text] numbers) describing the winding of the complex helicity spectrum across the interface. Our theory provides a new twist and insights for several areas of wave physics: Maxwell electromagnetism, topological quantum states, non-Hermitian wave physics, and metamaterials.
Identifiants
pubmed: 30718477
doi: 10.1038/s41467-019-08397-6
pii: 10.1038/s41467-019-08397-6
pmc: PMC6362114
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
580Références
Phys Rev Lett. 2014 Jul 18;113(3):033601
pubmed: 25083644
Science. 2017 Nov 24;358(6366):1075-1077
pubmed: 28982798
Science. 2006 Jan 13;311(5758):189-93
pubmed: 16410515
Phys Rev Lett. 2013 Aug 9;111(6):060401
pubmed: 23971539
Science. 2015 Jun 26;348(6242):1448-51
pubmed: 26113717
Nature. 2015 Oct 22;526(7574):554-8
pubmed: 26458102
Phys Rev Lett. 2007 Feb 16;98(7):073901
pubmed: 17359023
Phys Rev Lett. 2018 Jun 15;120(24):243605
pubmed: 29956970
Sci Technol Adv Mater. 2014 Dec 9;15(6):064403
pubmed: 27877726
Nat Mater. 2013 Mar;12(3):233-9
pubmed: 23241532
Phys Rev Lett. 2008 Jan 11;100(1):013904
pubmed: 18232766
Science. 2004 Aug 6;305(5685):788-92
pubmed: 15297655
Science. 2015 Jul 3;349(6243):47-50
pubmed: 26138969
Phys Rev Lett. 2001 Jan 29;86(5):787-90
pubmed: 11177940
Phys Rev Lett. 2017 Jan 27;118(4):040401
pubmed: 28186785
Phys Rev Lett. 2006 Oct 13;97(15):157403
pubmed: 17155357
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jan;69(1 Pt 2):016617
pubmed: 14995746
Phys Rev Lett. 2003 Jan 24;90(3):034101
pubmed: 12570489
Nature. 2009 Oct 8;461(7265):772-5
pubmed: 19812669
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6845-50
pubmed: 27274059