Presynaptic SNAP-25 regulates retinal waves and retinogeniculate projection via phosphorylation.


Journal

Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876

Informations de publication

Date de publication:
19 02 2019
Historique:
pubmed: 8 2 2019
medline: 2 5 2019
entrez: 8 2 2019
Statut: ppublish

Résumé

Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.

Identifiants

pubmed: 30728295
pii: 1812169116
doi: 10.1073/pnas.1812169116
pmc: PMC6386712
doi:

Substances chimiques

Snap25 protein, mouse 0
Synaptosomal-Associated Protein 25 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3262-3267

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Dev Neurobiol. 2008 May;68(6):835-44
pubmed: 18383551
PLoS One. 2012;7(10):e47465
pubmed: 23091625
PLoS One. 2014 Apr 28;9(4):e95090
pubmed: 24777042
J Neurosci. 2014 Oct 22;34(43):14288-303
pubmed: 25339742
Nat Rev Neurosci. 2010 Jan;11(1):18-29
pubmed: 19953103
Science. 1998 Mar 27;279(5359):2108-12
pubmed: 9516112
Nature. 1988 Dec 1;336(6198):468-71
pubmed: 2461517
Neuron. 2013 Oct 30;80(3):729-41
pubmed: 24183023
J Neurosci. 2017 Oct 25;37(43):10389-10397
pubmed: 28972123
Cell. 2007 Dec 14;131(6):1164-78
pubmed: 18083105
J Neurosci. 2006 Dec 6;26(49):12807-15
pubmed: 17151284
Annu Rev Neurosci. 2002;25:409-32
pubmed: 12052915
Neuron. 2013 Dec 4;80(5):1129-44
pubmed: 24314725
J Comp Neurol. 1998 May 11;394(3):374-85
pubmed: 9579400
Nature. 2012 Oct 11;490(7419):219-25
pubmed: 23060192
J Neurosci. 2007 Aug 22;27(34):9130-40
pubmed: 17715349
Ann N Y Acad Sci. 2009 Jan;1152:93-9
pubmed: 19161380
Cold Spring Harb Perspect Biol. 2011 Dec 01;3(12):
pubmed: 22026965
J Neurochem. 1999 Feb;72(2):614-24
pubmed: 9930733
Neuron. 2011 Jun 23;70(6):1115-27
pubmed: 21689598
J Neurosci Methods. 2004 May 30;135(1-2):17-26
pubmed: 15020085
Biol Psychiatry. 1998 Feb 15;43(4):239-43
pubmed: 9513732
Nat Neurosci. 2005 Jan;8(1):72-8
pubmed: 15608630
Cell. 1998 Oct 2;95(1):17-27
pubmed: 9778244
J Comp Neurol. 2001 Feb 12;430(3):306-20
pubmed: 11169469
Nat Neurosci. 2007 Jan;10(1):58-66
pubmed: 17159991
Science. 1988 Oct 7;242(4875):87-9
pubmed: 3175636
Nat Neurosci. 2006 Mar;9(3):363-71
pubmed: 16462736
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):1027-32
pubmed: 17209010
J Neurosci. 2012 Jan 18;32(3):850-63
pubmed: 22262883

Auteurs

Yu-Tien Hsiao (YT)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Wen-Chi Shu (WC)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Pin-Chun Chen (PC)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Hui-Ju Yang (HJ)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.
Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan.

Hsin-Yo Chen (HY)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Sheng-Ping Hsu (SP)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Yi-Ting Huang (YT)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Cheng-Chang Yang (CC)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Yen-Ju Chen (YJ)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Ni-Yen Yu (NY)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Shih-Yuan Liou (SY)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Ning Chiang (N)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.
Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan.

Chien-Ting Huang (CT)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Tzu-Lin Cheng (TL)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Lam-Yan Cheung (LY)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan.

Yu-Chun Lin (YC)

Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.

Juu-Chin Lu (JC)

Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; juuchin@mail.cgu.edu.tw chihtienwang@ntu.edu.tw.
Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.

Chih-Tien Wang (CT)

Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan; juuchin@mail.cgu.edu.tw chihtienwang@ntu.edu.tw.
Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan.
Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH