Electrically pumped photonic integrated soliton microcomb.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 02 2019
08 02 2019
Historique:
received:
02
12
2018
accepted:
04
01
2019
entrez:
10
2
2019
pubmed:
10
2
2019
medline:
10
2
2019
Statut:
epublish
Résumé
Microcombs provide a path to broad-bandwidth integrated frequency combs with low power consumption, which are compatible with wafer-scale fabrication. Yet, electrically-driven, photonic chip-based microcombs are inhibited by the required high threshold power and the frequency agility of the laser for soliton initiation. Here we demonstrate an electrically-driven soliton microcomb by coupling a III-V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process. The laser diode is self-injection locked to the microresonator, which is accompanied by the narrowing of the laser linewidth, and the simultaneous formation of dissipative Kerr solitons. By tuning the laser diode current, we observe transitions from modulation instability, breather solitons, to single-soliton states. The system operating at an electronically-detectable sub-100-GHz mode spacing requires less than 1 Watt of electrical power, can fit in a volume of ca. 1 cm
Identifiants
pubmed: 30737384
doi: 10.1038/s41467-019-08498-2
pii: 10.1038/s41467-019-08498-2
pmc: PMC6368592
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
680Commentaires et corrections
Type : ErratumIn
Références
Opt Express. 2007 Dec 10;15(25):17106-13
pubmed: 19551003
Opt Lett. 2016 Jul 1;41(13):3134-7
pubmed: 27367120
Phys Rev Lett. 1987 May 25;58(21):2209-2211
pubmed: 10034681
Opt Lett. 2016 Jun 1;41(11):2565-8
pubmed: 27244415
Opt Express. 2018 Nov 12;26(23):30509-30522
pubmed: 30469949
Nature. 2007 Dec 20;450(7173):1214-7
pubmed: 18097405
Nature. 2002 Mar 14;416(6877):233-7
pubmed: 11894107
Opt Lett. 2018 Jul 15;43(14):3200-3203
pubmed: 30004531
Nat Commun. 2015 Aug 11;6:7957
pubmed: 26260955
Nature. 2018 May;557(7703):81-85
pubmed: 29695870
Science. 2016 Jan 22;351(6271):357-60
pubmed: 26721682
Opt Lett. 2002 Oct 1;27(19):1669-71
pubmed: 18033330
Phys Rev Lett. 2018 Aug 10;121(6):063902
pubmed: 30141662
Science. 2018 Feb 23;359(6378):887-891
pubmed: 29472477
Science. 2011 Apr 29;332(6029):555-9
pubmed: 21527707
Nature. 2017 Jun 7;546(7657):274-279
pubmed: 28593968
Opt Express. 2014 Dec 15;22(25):30786-94
pubmed: 25607027
Opt Lett. 1987 Nov 1;12(11):876-8
pubmed: 19741901
Opt Express. 2006 Oct 2;14(20):9203-10
pubmed: 19529301
Opt Express. 2016 Dec 12;24(25):29312-29320
pubmed: 27958591
Nature. 2018 Oct;562(7727):401-405
pubmed: 30297798
Science. 2016 Nov 4;354(6312):600-603
pubmed: 27738017
Nat Commun. 2017 Sep 29;8(1):736
pubmed: 28963496
Science. 2018 Feb 23;359(6378):884-887
pubmed: 29472476