Synchronised spiking activity underlies phase amplitude coupling in the subthalamic nucleus of Parkinson's disease patients.
Journal
Neurobiology of disease
ISSN: 1095-953X
Titre abrégé: Neurobiol Dis
Pays: United States
ID NLM: 9500169
Informations de publication
Date de publication:
07 2019
07 2019
Historique:
received:
29
11
2018
revised:
21
01
2019
accepted:
07
02
2019
pubmed:
13
2
2019
medline:
10
1
2020
entrez:
13
2
2019
Statut:
ppublish
Résumé
Both phase-amplitude coupling (PAC) and beta-bursts in the subthalamic nucleus have been significantly linked to symptom severity in Parkinson's disease (PD) in humans and emerged independently as competing biomarkers for closed-loop deep brain stimulation (DBS). However, the underlying nature of subthalamic PAC is poorly understood and its relationship with transient beta burst-events has not been investigated. To address this, we studied macro- and micro electrode recordings of local field potentials (LFPs) and single unit activity from 15 hemispheres in 10 PD patients undergoing DBS surgery. PAC between beta phase and high frequency oscillation (HFO) amplitude was compared to single unit firing rates, spike triggered averages, power spectral densities, inter spike intervals and phase-spike locking, and was studied in periods of beta-bursting. We found a significant synchronisation of spiking to HFOs and correlation of mean firing rates with HFO-amplitude when the latter was coupled to beta phase (i.e. in the presence of PAC). In the presence of PAC, single unit power spectra displayed peaks in the beta and HFO frequency range and the HFO frequency was correlated with that in the LFP. Furthermore, inter spike interval frequencies peaked in the same frequencies for which PAC was observed. Finally, PAC significantly increased with beta burst-duration. Our findings offer new insight in the pathology of Parkinson's disease by providing evidence that subthalamic PAC reflects the locking of spiking activity to network beta oscillations and that this coupling progressively increases with beta-burst duration. These findings suggest that beta-bursts capture periods of increased subthalamic input/output synchronisation in the beta frequency range and have important implications for therapeutic closed-loop DBS. SIGNIFICANCE STATEMENT: Identifying biomarkers for closed-loop deep brain stimulation (DBS) has become an increasingly important issue in Parkinson's Disease (PD) research. Two such biomarkers, phase-amplitude coupling (PAC) and beta-bursts, recorded from the implanted electrodes in subthalamic nucleus in PD patients, correlate with motor impairment. However, the physiological basis of PAC, and it relationship to beta bursts, is unclear. We provide multiple lines of evidence that PAC in the human STN reflects the locking of spiking activity to network beta oscillations and that this coupling progressively increases with the duration of beta-bursts. This suggests that beta-bursts capture increased subthalamic input/output synchronisation and provides new insights in PD pathology with direct implications for closed-loop DBS therapy strategies.
Identifiants
pubmed: 30753889
pii: S0969-9961(19)30037-3
doi: 10.1016/j.nbd.2019.02.005
pmc: PMC6545172
mid: EMS83122
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
101-113Subventions
Organisme : Medical Research Council
ID : MC_UU_12024/1
Pays : United Kingdom
Informations de copyright
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Références
J Neurosci. 2008 Jun 11;28(24):6165-73
pubmed: 18550758
Mov Disord. 2006 Sep;21(9):1425-31
pubmed: 16763982
Eur J Neurosci. 2005 Mar;21(5):1413-22
pubmed: 15813951
Nat Neurosci. 2015 May;18(5):779-86
pubmed: 25867121
J Neurophysiol. 2017 Nov 1;118(5):2654-2669
pubmed: 28835526
J Neurosci. 2008 Dec 24;28(52):14245-58
pubmed: 19109506
J Neurophysiol. 2006 Dec;96(6):3248-56
pubmed: 17005611
J Neurophysiol. 2010 Aug;104(2):1195-210
pubmed: 20463205
J Neurosci. 2010 May 12;30(19):6667-77
pubmed: 20463229
Clin Neurophysiol. 2016 Apr;127(4):2010-9
pubmed: 26971483
Mov Disord. 2017 Jun;32(6):810-819
pubmed: 28597557
Nat Neurosci. 2015 Sep;18(9):1318-24
pubmed: 26214371
J Neurosci. 2014 Sep 17;34(38):12816-27
pubmed: 25232117
Exp Neurol. 2008 Sep;213(1):108-13
pubmed: 18619592
Elife. 2016 Dec 07;5:
pubmed: 27925581
J Neurosci Methods. 2015 Mar 30;243:94-102
pubmed: 25677405
Stereotact Funct Neurosurg. 2003;80(1-4):37-42
pubmed: 14745207
Brain. 2017 Nov 1;140(11):2968-2981
pubmed: 29053865
J Neurosci. 2014 Apr 23;34(17):5938-48
pubmed: 24760853
J Neurosci. 2017 May 3;37(18):4830-4840
pubmed: 28416595
Front Neurosci. 2017 Sep 01;11:487
pubmed: 28919850
J Neurophysiol. 2008 Nov;100(5):2515-24
pubmed: 18701754
J Neurosci. 2013 Apr 24;33(17):7220-33
pubmed: 23616531
Brain. 2017 Apr 1;140(4):1053-1067
pubmed: 28334851
Exp Neurol. 2009 Feb;215(2):380-7
pubmed: 19070616
Mov Disord. 2014 Sep;29(10):1265-72
pubmed: 25041924
Curr Opin Neurobiol. 2015 Apr;31:51-61
pubmed: 25212583
J Neurosci Methods. 2008 Mar 15;168(2):494-9
pubmed: 18061683
Nat Rev Neurosci. 2013 Nov;14(11):770-85
pubmed: 24135696
Neurobiol Dis. 2018 Sep;117:217-225
pubmed: 29909050
J Neurosci. 2009 Oct 28;29(43):13613-20
pubmed: 19864573
Exp Neurol. 2011 Jun;229(2):324-31
pubmed: 21376039
J Neurosci. 2008 Apr 30;28(18):4795-806
pubmed: 18448656
Mov Disord. 2017 Aug;32(8):1183-1190
pubmed: 28639263
J Neurosci. 2013 Jun 26;33(26):10750-61
pubmed: 23804097
Eur J Neurosci. 2006 Apr;23(7):1956-60
pubmed: 16623853
J Neurosci. 2016 Apr 13;36(15):4196-208
pubmed: 27076419
J Cogn Neurosci. 2009 May;21(5):875-89
pubmed: 18702577
Neuron. 2011 Oct 20;72(2):370-84
pubmed: 22017994
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13687-92
pubmed: 26460033
Neuron. 2014 Sep 3;83(5):1002-18
pubmed: 25175878
Trends Neurosci. 2018 Jul;41(7):415-417
pubmed: 29739627
Front Syst Neurosci. 2014 Feb 11;8:15
pubmed: 24574981
J Neurophysiol. 2016 Mar;115(3):1587-95
pubmed: 26792883
J Neurosci. 2017 Nov 15;37(46):11220-11232
pubmed: 29038241
Neurobiol Dis. 2018 Apr;112:49-62
pubmed: 29307661
Hippocampus. 2017 Nov;27(11):1125-1139
pubmed: 28667703
Annu Rev Neurosci. 2012;35:203-25
pubmed: 22443509
J Neurophysiol. 2017 Sep 1;118(3):1472-1487
pubmed: 28592690
Neuroimage. 2017 Feb 15;147:473-487
pubmed: 27915117
PLoS Biol. 2011 Apr;9(4):e1000610
pubmed: 21532743
J Neurosci. 2014 Apr 30;34(18):6273-85
pubmed: 24790198
Clin Neurophysiol. 2008 Jan;119(1):116-33
pubmed: 18037343
J Neurosci. 2017 Sep 27;37(39):9347-9349
pubmed: 28954871
Science. 2006 Sep 15;313(5793):1626-8
pubmed: 16973878
Trends Cogn Sci. 2010 Nov;14(11):506-15
pubmed: 20932795
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20942-7
pubmed: 19934062
J Neurosci Methods. 2008 Sep 15;174(1):50-61
pubmed: 18674562
Nature. 2009 Nov 19;462(7271):353-7
pubmed: 19924214
Brain. 2015 Jun;138(Pt 6):1667-78
pubmed: 25888552