Highly flexible, IgG-shaped, trivalent antibodies effectively target tumor cells and induce T cell-mediated killing.


Journal

Biological chemistry
ISSN: 1437-4315
Titre abrégé: Biol Chem
Pays: Germany
ID NLM: 9700112

Informations de publication

Date de publication:
25 02 2019
Historique:
received: 08 08 2018
accepted: 28 11 2018
entrez: 15 2 2019
pubmed: 15 2 2019
medline: 2 11 2019
Statut: ppublish

Résumé

A novel bispecific antibody format was applied to generate T cell-engaging antibodies. The TriFab format is a trivalent IgG-shaped entity composed of two Fab arms that bind to antigens on the surface of tumor cells, which are linked via flexible peptides to a CD3 binding moiety that replaces the CH2 domains of conventional IgGs. The distinctive feature of these T cell recruiting bispecifics is that their CD3 variable regions are incorporated between domains, rather than N- or C-terminally fused to an Fc or antibody fragments. T cell recruiting TriFabs resemble in size and shape, are expressed and show biophysical properties similar to regular IgGs. Transmission electron microscopy (TEM) demonstrates high flexibility of the cell surface binding arms as well as target antigen accessibility of the interspersed CD3 binding domain. Functional co-culturing assays of peripheral blood mononuclear cells (PBMCs) and different tumor cell lines (MCF7 and A431) revealed a dose-dependent T cell-mediated cytotoxicity that was induced by the TriFabs targeting either LeY or EGFR cell surface antigens.

Identifiants

pubmed: 30763031
doi: 10.1515/hsz-2018-0338
pii: hsz-2018-0338
doi:

Substances chimiques

Antibodies, Bispecific 0
Cytokines 0
Immunoglobulin G 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

343-350

Références

Almagro, J.C., Daniels-Wells, T.R., Perez-Tapia, S.M., and Penichet, M.L. (2018). Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front Immunol. 8.
Bacac, M., Klein, C., and Umana, P. (2016). CEA TCB: a novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. Oncoimmunology 5.
Bardwell, P.D., Staron, M.M., Liu, J., Tao, Q., Scesney, S., Bukofzer, G., Rodriguez, L.E., Choi, C.H., Wang, J., Chang, Q., et al. (2018). Potent and conditional redirected T cell killing of tumor cells using half DVD-Ig. Protein Cell 9, 121–129.
Bluemel, C., Hausmann, S., Fluhr, P., Sriskandarajah, M., Stallcup, W.B., Baeuerle, P.A., and Kufer, P. (2010). Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol. Immunother. 59, 1197–1209.
Brinkmann, U. and Kontermann, R.E. (2017). The making of bispecific antibodies. MAbs 9, 182–212.
Brinkmann, U., Pai, L.H., FitzGerald, D.J., Willingham, M., and Pastan, I. (1991). B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sci. USA. 88, 8616–8620.
Correia, I.R. (2010). Stability of IgG isotypes in serum. MAbs 2, 221–232.
Harwood, S.L., Alvarez-Cienfuegos, A., Nunez-Prado, N., Compte, M., Hernandez-Perez, S., Merino, N., Bonet, J., Navarro, R., Van Bergen En Henegouwen, P.M.P., Lykkemark, S., et al. (2017). ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncoimmunology 7, e1377874.
Hoffmann, P., Hofmeister, R., Brischwein, K., Brandl, C., Crommer, S., Bargou, R., Itin, C., Prang, N., and Baeuerle, P.A. (2005). Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int. J. Cancer 115, 98–104.
Huang, S.M., Bock, J.M., and Harari, P.M. (1999). Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 59, 1935–1940.
Kantarjian, H., Stein, A., Gökbuget, N., Fielding, A.K., Schuh, A.C., Ribera, J.M., Wei, A., Dombret, H., Foà, R., Bassan, R., et al. (2017). Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847.
Kobold, S., Pantelyushin, S., Rataj, F., and vom Berg, J. (2018). Rationale for combining bispecific T cell activating antibodies with checkpoint blockade for cancer therapy. Front Oncol. 8.
Kontermann, R.E. and Brinkmann, U. (2015). Bispecific antibodies. Drug Discov. Today 20, 838–847.
Le Gall, F., Reusch, U., Little, M., and Kipriyanov, S.M. (2004). Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Eng. Des. Select. 17, 357–366.
Leong, S.R., Sukumaran, S., Hristopoulos, M., Totpal, K., Stainton, S., Lu, E., Wong, A., Tam, L., Newman, R., Vuillemenot, B.R., et al. (2017). An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood 129, 609–618.
Liu, H., Saxena, A., Sidhu, S.S., and Wu, D. (2017). Fc Engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front Immunol. 8.
Mayer, K., Baumann, A.L., Grote, M., Seeber, S., Kettenberger, H., Breuer, S., Killian, T., Schafer, W., and Brinkmann, U. (2015). TriFabs – trivalent IgG-shaped bispecific antibody derivatives: design, generation, characterization and application for targeted payload delivery. Int. J. Mol. Sci. 16, 27497–27507.
Meibohm, B. and Zhou, H. (2012). Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J. Clin. Pharmacol. 52, 54S–62S.
Metz, S., Haas, A.K., Daub, K., Croasdale, R., Stracke, J., Lau, W., Georges, G., Josel, H.P., Dziadek, S., Hopfner, K.P., et al. (2011). Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc. Natl. Acad. Sci. USA 108, 8194–8199.
Moore, G.L., Bautista, C., Pong, E., Nguyen, D.-H.T., Jacinto, J., Eivazi, A., Muchhal, U.S., Karki, S., Chu, S.Y., and Lazar, G.A. (2011). A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. MAbs 3, 546–557.
Reusch, U., Duell, J., Ellwanger, K., Herbrecht, C., Knackmuss, S.H., Fucek, I., Eser, M., McAleese, F., Molkenthin, V., Gall, F.L., et al. (2015). A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19+ tumor cells. MAbs 7, 584–604.
Ridgway, J.B., Presta, L.G., and Carter, P. (1996). ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9, 617–621.
Rudnick, S.I. and Adams, G.P. (2009). Affinity and avidity in antibody-based tumor targeting. Cancer Biother. Radiopharm. 24, 155–161.
Sathish, J.G., Sethu, S., Bielsky, M.C., de Haan, L., French, N.S., Govindappa, K., Green, J., Griffiths, C.E., Holgate, S., Jones, D., et al. (2013). Challenges and approaches for the development of safer immunomodulatory biologics. Nat. Rev. Drug Discov. 12, 306–324.
Spiess, C., Zhai, Q., and Carter, P.J. (2015). Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67, 95–106.
Stieglmaier, J., Benjamin, J., and Nagorsen, D. (2015). Utilizing the BiTE (bispecific T-cell engager) platform for immunotherapy of cancer. Expert Opin. Biol. Ther. 15, 1093–1099.
Van de Vijver, M.J., Kumar, R., and Mendelsohn, J. (1991). Ligand-induced activation of A431 cell epidermal growth factor receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than intracellularly. J. Biol. Chem. 266, 7503–7508.
Wu, J., Fu, J., Zhang, M., and Liu, D. (2015). Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J. Hematol. Oncol. 8.
Zhukovsky, E.A., Morse, R.J., and Maus, M.V. (2016). Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr. Opin. Immunol. 40, 24–35.

Auteurs

Steffen Dickopf (S)

Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany.

Matthias E Lauer (ME)

Roche Pharma Research and Early Development, Chemical Biology, Roche Innovation Center Basel, Grenzacherstraße 124, CH-4070 Basel, Switzerland.

Philippe Ringler (P)

Center for Cellular Imaging and Nano Analytics, Biozentrum University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.

Christian Spick (C)

Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany.

Peter Kern (P)

Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany.

Ulrich Brinkmann (U)

Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH