Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina.
bleb
curvature
lamin
meshwork
nucleus
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
05 03 2019
05 03 2019
Historique:
pubmed:
16
2
2019
medline:
24
3
2020
entrez:
16
2
2019
Statut:
ppublish
Résumé
The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.
Identifiants
pubmed: 30765529
pii: 1810070116
doi: 10.1073/pnas.1810070116
pmc: PMC6410836
doi:
Substances chimiques
Lamin Type A
0
Lamin Type B
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
4307-4315Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB016657
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR019003
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS095884
Pays : United States
Organisme : NINDS NIH HHS
ID : R33 NS104384
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA185363
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR025488
Pays : United States
Organisme : NIBIB NIH HHS
ID : T32 EB003392
Pays : United States
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Science. 2016 Apr 15;352(6283):353-8
pubmed: 27013428
Cold Spring Harb Protoc. 2015 Aug 03;2015(8):769-72
pubmed: 26240403
Nature. 2015 Nov 5;527(7576):105-9
pubmed: 26524528
Nature. 2017 Mar 9;543(7644):261-264
pubmed: 28241138
J Struct Biol. 2012 Jan;177(1):24-31
pubmed: 22126840
Genes Dev. 2008 Dec 15;22(24):3409-21
pubmed: 19141474
J Biol Chem. 2006 Sep 1;281(35):25768-80
pubmed: 16825190
Eur J Biochem. 2001 Jan;268(2):420-8
pubmed: 11168378
Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10428-33
pubmed: 15232008
Aging Cell. 2008 Jun;7(3):355-67
pubmed: 18363904
Mol Biol Cell. 2011 Dec;22(23):4683-93
pubmed: 21976703
J Cell Sci. 2012 May 1;125(Pt 9):2087-93
pubmed: 22669459
Proc Natl Acad Sci U S A. 2013 May 21;110(21):E1923-32
pubmed: 23650370
Nature. 2003 May 15;423(6937):293-8
pubmed: 12714972
Nat Genet. 2006 Oct;38(10):1114-23
pubmed: 16951681
Curr Protoc Cytom. 2017 Jul 5;81:12.46.1-12.46.27
pubmed: 28678417
Science. 2007 Sep 21;317(5845):1749-53
pubmed: 17702910
Mol Biol Cell. 2005 Apr;16(4):1606-16
pubmed: 15659645
Cell Signal. 1998 Mar;10(3):167-72
pubmed: 9607139
Biochem Biophys Res Commun. 1989 Mar 31;159(3):871-7
pubmed: 2539153
Mol Cell Biol. 2017 Nov 28;37(24):
pubmed: 28993479
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):E423-31
pubmed: 22308344
Science. 2016 Apr 15;352(6283):359-62
pubmed: 27013426
J Neurol Sci. 1998 Jul 15;159(1):88-93
pubmed: 9700709
Biophys J. 1998 Sep;75(3):1584-97
pubmed: 9726959
Mol Biol Cell. 2016 Nov 7;27(22):3627-3636
pubmed: 27582387
J Cell Biol. 1999 Nov 29;147(5):913-20
pubmed: 10579712
Exp Cell Res. 1990 Jan;186(1):169-76
pubmed: 2298234
Curr Biol. 2016 Oct 10;26(19):2651-2658
pubmed: 27641764
J Cell Biol. 2003 Sep 29;162(7):1223-32
pubmed: 14504265
Biophys J. 2017 May 23;112(10):2196-2208
pubmed: 28538156
Cold Spring Harb Perspect Biol. 2017 Nov 1;9(11):
pubmed: 29092896
Mol Biol Cell. 2018 Jan 15;29(2):220-233
pubmed: 29142071
Science. 2011 Dec 23;334(6063):1706-10
pubmed: 22116031
Science. 2013 Aug 9;341(6146):655-8
pubmed: 23845946
Nat Rev Mol Cell Biol. 2013 Jan;14(1):13-24
pubmed: 23212477
Mol Biol Cell. 2015 Nov 5;26(22):4075-86
pubmed: 26310440
Nucleus. 2011 Sep-Oct;2(5):425-33
pubmed: 22033280
J Biol Chem. 1993 Aug 5;268(22):16321-6
pubmed: 8344919
Genomics. 1995 May 20;27(2):230-6
pubmed: 7557986
Mol Cell Biol. 1992 Aug;12(8):3499-506
pubmed: 1630457
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5076-81
pubmed: 20145110
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10100-10105
pubmed: 30224463
Genes Dev. 2008 Apr 1;22(7):832-53
pubmed: 18381888