Smac mimetic suppresses tunicamycin-induced apoptosis via resolution of ER stress.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
15 02 2019
Historique:
received: 24 11 2017
accepted: 19 12 2018
revised: 02 12 2018
entrez: 17 2 2019
pubmed: 17 2 2019
medline: 9 4 2020
Statut: epublish

Résumé

Since Inhibitor of Apoptosis (IAP) proteins have been implicated in cellular adaptation to endoplasmic reticulum (ER) stress, we investigated the regulation of ER stress-induced apoptosis by small-molecule second mitochondria-derived activator of caspase (Smac) mimetics that antagonize IAP proteins. Here, we discover that Smac mimetic suppresses tunicamycin (TM)-induced apoptosis via resolution of the unfolded protein response (UPR) and ER stress. Smac mimetics such as BV6 selectively inhibit apoptosis triggered by pharmacological or genetic inhibition of protein N-glycosylation using TM or knockdown of DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation. In contrast, BV6 does not rescue cell death induced by other typical ER stressors (i.e., thapsigargin (TG), dithiothreitol, brefeldin A, bortezomib, or 2-deoxyglucose). The protection from TM-triggered apoptosis is found for structurally different Smac mimetics and for genetic knockdown of cellular IAP (cIAP) proteins in several cancer types, underlining the broader relevance. Interestingly, lectin microarray profiling reveals that BV6 counteracts TM-imposed inhibition of protein glycosylation. BV6 consistently abolishes TM-stimulated accumulation of ER stress markers such as glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) and reduces protein kinase RNA-like ER kinase (PERK) phosphorylation and X box-binding protein 1 (XBP1) splicing upon TM treatment. BV6-stimulated activation of nuclear factor-κB (NF-κB) contributes to the resolution of ER stress, since NF-κB inhibition by overexpression of dominant-negative IκBα superrepressor counteracts the suppression of TM-stimulated transcriptional activation of CHOP and GRP78 by BV6. Thus, our study is the first to show that Smac mimetic protects from TM-triggered apoptosis by resolving the UPR and ER stress. This provides new insights into the regulation of cellular stress responses by Smac mimetics.

Identifiants

pubmed: 30770792
doi: 10.1038/s41419-019-1381-z
pii: 10.1038/s41419-019-1381-z
pmc: PMC6377606
doi:

Substances chimiques

Apoptosis Regulatory Proteins 0
BV6 peptide 0
DDIT3 protein, human 0
DIABLO protein, human 0
Endoplasmic Reticulum Chaperone BiP 0
HSPA5 protein, human 0
Heat-Shock Proteins 0
Inhibitor of Apoptosis Proteins 0
Mitochondrial Proteins 0
NF-kappa B 0
Oligopeptides 0
Protective Agents 0
Tunicamycin 11089-65-9
Transcription Factor CHOP 147336-12-7

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

155

Commentaires et corrections

Type : ErratumIn

Références

Lai, E., Teodoro, T. & Volchuk, A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda). 22, 193–201 (2007).
pubmed: 17557940 pmcid: 17557940
Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519–529 (2007).
pubmed: 17565364 doi: 10.1038/nrm2199 pmcid: 17565364
Kim, I., Xu, W. & Reed, J. C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7, 1013–1030 (2008).
pubmed: 19043451 doi: 10.1038/nrd2755 pmcid: 19043451
Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov. 11, 109–124 (2012).
pubmed: 22293567 doi: 10.1038/nrd3627 pmcid: 22293567
Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131, 669–681 (2007).
doi: 10.1016/j.cell.2007.10.030
Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682–693 (2007).
pubmed: 18022363 doi: 10.1016/j.cell.2007.10.037 pmcid: 18022363
Oeckinghaus, A., Hayden, M. S. & Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12, 695–708 (2011).
pubmed: 21772278 doi: 10.1038/ni.2065 pmcid: 21772278
Hu, P., Han, Z., Couvillon, A. D. & Exton, J. H. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279, 49420–49429 (2004).
pubmed: 15339911 doi: 10.1074/jbc.M407700200 pmcid: 15339911
Warnakulasuriyarachchi, D., Cerquozzi, S., Cheung, H. H. & Holcik, M. Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J. Biol. Chem. 279, 17148–17157 (2004).
pubmed: 14960583 doi: 10.1074/jbc.M308737200 pmcid: 14960583
Hamanaka, R. B., Bobrovnikova-Marjon, E., Ji, X., Liebhaber, S. A. & Diehl, J. A. PERK-dependent regulation of IAP translation during ER stress. Oncogene 28, 910–920 (2009).
pubmed: 19029953 doi: 10.1038/onc.2008.428
Denmeade, S. R. & Isaacs, J. T. The SERCA pump as a therapeutic target: making a “smart bomb” for prostate cancer. Cancer Biol. Ther. 4, 14–22 (2005).
pubmed: 15662118 doi: 10.4161/cbt.4.1.1505
Braakman, I., Helenius, J. & Helenius, A. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11, 1717–1722 (1992).
pubmed: 1582407 pmcid: 556629 doi: 10.1002/j.1460-2075.1992.tb05223.x
Hunziker, W., Whitney, J. A. & Mellman, I. Brefeldin A and the endocytic pathway. Possible implications for membrane traffic and sorting. FEBS Lett. 307, 93–96 (1992).
pubmed: 1639200 doi: 10.1016/0014-5793(92)80908-Y
Obeng, E. A. et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907–4916 (2006).
pubmed: 16507771 pmcid: 1895817 doi: 10.1182/blood-2005-08-3531
Harding, H. P., Calfon, M., Urano, F., Novoa, I. & Ron, D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu. Rev. Cell. Dev. Biol. 18, 575–599 (2002).
pubmed: 12142265 doi: 10.1146/annurev.cellbio.18.011402.160624
Heifetz, A., Keenan, R. W. & Elbein, A. D. Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate Glc-NAc-1-phosphate transferase. Biochemistry (Mosc.) 18, 2186–2192 (1979).
doi: 10.1021/bi00578a008
Gerlach, J., Kilcoynea, M. & Joshi, L. Microarray evaluation of the effects of lectin and glycoprotein orientation and data filtering on glycoform discrimination. Anal. Methods 6, 440–449 (2014).
doi: 10.1039/C3AY40936H
Nozaki, S., Sledge, G. W. Jr & Nakshatri, H. Repression of GADD153/CHOP by NF-kappaB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 20, 2178–2185 (2001).
pubmed: 11360202 doi: 10.1038/sj.onc.1204292
Eckhardt, I., Roesler, S. & Fulda, S. Identification of DR5 as a critical, NF-kappaB-regulated mediator of Smac-induced apoptosis. Cell Death Dis. 4, e936 (2013).
pubmed: 24287697 pmcid: 3847333 doi: 10.1038/cddis.2013.457
Burikhanov, R. et al. Novel mechanism of apoptosis resistance in cancer mediated by extracellular PAR-4. Cancer Res. 73, 1011–1019 (2013).
pubmed: 23204231 doi: 10.1158/0008-5472.CAN-12-3212 pmcid: 23204231
Fulda, S. Molecular pathways: targeting inhibitor of apoptosis proteins in cancer—from molecular mechanism to therapeutic application. Clin. Cancer Res. 20, 289–295 (2014).
pubmed: 24270683 doi: 10.1158/1078-0432.CCR-13-0227 pmcid: 24270683
Fulda, S., Wick, W., Weller, M. & Debatin, K. M. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med. 8, 808–815 (2002).
pubmed: 12118245 doi: 10.1038/nm735 pmcid: 12118245
Vogler, M. et al. Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res. 69, 2425–2434 (2009).
pubmed: 19258513 doi: 10.1158/0008-5472.CAN-08-2436 pmcid: 19258513
Loeder, S. et al. A novel paradigm to trigger apoptosis in chronic lymphocytic leukemia. Cancer Res. 69, 8977–8986 (2009).
pubmed: 19920200 doi: 10.1158/0008-5472.CAN-09-2604 pmcid: 19920200
Fakler, M. et al. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 113, 1710–1722 (2009).
pubmed: 19036706 doi: 10.1182/blood-2007-09-114314 pmcid: 19036706
Stadel, D. et al. TRAIL-induced apoptosis is preferentially mediated via TRAIL receptor 1 in pancreatic carcinoma cells and profoundly enhanced by XIAP inhibitors. Clin. Cancer Res. 16, 5734–5749 (2010).
pubmed: 20940278 doi: 10.1158/1078-0432.CCR-10-0985 pmcid: 20940278
Loeder, S., Drensek, A., Jeremias, I., Debatin, K. M. & Fulda, S. Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95-induced apoptosis. Int. J. Cancer 126, 2216–2228 (2010).
pubmed: 19676052 pmcid: 19676052
Basit, F., Humphreys, R. & Fulda, S. RIP1 protein-dependent assembly of a cytosolic cell death complex is required for inhibitor of apoptosis (IAP) inhibitor-mediated sensitization to lexatumumab-induced apoptosis. J. Biol. Chem. 287, 38767–38777 (2012).
pubmed: 22927431 pmcid: 3493919 doi: 10.1074/jbc.M112.398966
Abhari, B. A. et al. RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene 32, 3263–3273 (2013).
pubmed: 22890322 doi: 10.1038/onc.2012.337 pmcid: 22890322
Wagner, L. et al. Smac mimetic sensitizes glioblastoma cells to temozolomide-induced apoptosis in a RIP1- and NF-kappaB-dependent manner. Oncogene 32, 988–997 (2013).
pubmed: 22469979 doi: 10.1038/onc.2012.108
Loeder, S. et al. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia 26, 1020–1029 (2012).
doi: 10.1038/leu.2011.353
Stadel, D. et al. Requirement of nuclear factor kappaB for Smac mimetic-mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis. Neoplasia (New York, NY) 13, 1162–1170 (2011).
doi: 10.1593/neo.11460
Giagkousiklidis, S., Vellanki, S. H., Debatin, K. M. & Fulda, S. Sensitization of pancreatic carcinoma cells for gamma-irradiation-induced apoptosis by XIAP inhibition. Oncogene 26, 7006–7016 (2007).
pubmed: 17471230 doi: 10.1038/sj.onc.1210502
Vellanki, S. H. et al. Small-molecule XIAP inhibitors enhance gamma-irradiation-induced apoptosis in glioblastoma. Neoplasia 11, 743–752 (2009).
pubmed: 19649204 pmcid: 2713593 doi: 10.1593/neo.09436
Berger, R. et al. NF-{kappa}B is required for Smac mimetic-mediated sensitization of glioblastoma cells for {gamma}-irradiation-induced apoptosis. Mol. Cancer Ther. 10, 1867–1875 (2011).
pubmed: 21859841 doi: 10.1158/1535-7163.MCT-11-0218
Tchoghandjian, A., Jennewein, C., Eckhardt, I., Rajalingam, K. & Fulda, S. Identification of non-canonical NF-kappaB signaling as a critical mediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells. Cell Death Dis. 4, e564 (2013).
pubmed: 23538445 pmcid: 3615728 doi: 10.1038/cddis.2013.70
Tchoghandjian, A. et al. Smac mimetic promotes glioblastoma cancer stem-like cell differentiation by activating NF-κB. Cell Death Differ. 21, 735–747 (2014).
pubmed: 24488095 pmcid: 3978303 doi: 10.1038/cdd.2013.200
Fulda, S. Promises and challenges of Smac mimetics as cancer therapeutics. Clin. Cancer Res. 21, 5030–5036 (2015).
pubmed: 26567362 doi: 10.1158/1078-0432.CCR-15-0365
Fulda, S., Sieverts, H., Friesen, C., Herr, I. & Debatin, K. M. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res. 57, 3823–3829 (1997).
pubmed: 9288794
Oost, T. K. et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J. Med. Chem. 47, 4417–4426 (2004).
pubmed: 15317454 doi: 10.1021/jm040037k pmcid: 15317454
Chao, B. et al. US patent PCT/US2005/024700 (2006).
Karl, S. et al. Identification of a novel pro-apopotic function of NF-kappaB in the DNA damage response. J. Cell. Mol. Med. 13, 4239–4256 (2009).
pubmed: 19725919 pmcid: 4496130 doi: 10.1111/j.1582-4934.2009.00888.x

Auteurs

Behnaz Ahangarian Abhari (BA)

Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany.

Nicole McCarthy (N)

Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany.

Marie Le Berre (M)

Glycoscience Group, National University of Ireland, Galway, Ireland.

Michelle Kilcoyne (M)

Glycoscience Group, National University of Ireland, Galway, Ireland.

Lokesh Joshi (L)

Glycoscience Group, National University of Ireland, Galway, Ireland.

Patrizia Agostinis (P)

Cell Death Research and Therapy Unit, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium.

Simone Fulda (S)

Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany. simone.fulda@kgu.de.
German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany. simone.fulda@kgu.de.
German Cancer Research Center (DKFZ), Heidelberg, Germany. simone.fulda@kgu.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH