Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
04
10
2018
accepted:
10
01
2019
pubmed:
20
2
2019
medline:
27
6
2019
entrez:
20
2
2019
Statut:
ppublish
Résumé
Many Gram-negative pathogens utilize dedicated secretion systems to export virulence factors such as exotoxins and effectors
Identifiants
pubmed: 30778145
doi: 10.1038/s41564-019-0368-y
pii: 10.1038/s41564-019-0368-y
doi:
Substances chimiques
Bacterial Proteins
0
Bacterial Toxins
0
Hemolysin Proteins
0
Type III Secretion Systems
0
thermostable direct hemolysin
135433-21-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
781-788Références
Costra, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insight. Nat. Rev. Microbiol. 13, 343–359 (2015).
doi: 10.1038/nrmicro3456
Green, E. R. & Mecsas, J. Bacterial secretion systems: an overview. Microbiol. Spectr. 4, VMBF-0012-2015 (2016).
Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336–351 (2012).
doi: 10.1038/nrmicro2762
Galán, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).
doi: 10.1146/annurev-micro-092412-155725
Stathopoulos, C. et al. Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect. 2, 1061–1072 (2000).
doi: 10.1016/S1286-4579(00)01260-0
Daniels, N. A. et al. Vibrio parahaemolyticus infections in the United States, 1973–1998. J. Infect. Dis. 181, 1661–1666 (2000).
doi: 10.1086/315459
Nair, G. B. et al. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 20, 39–48 (2007).
doi: 10.1128/CMR.00025-06
Makino, K. et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from V. cholerae. Lancet 361, 743–749 (2003).
doi: 10.1016/S0140-6736(03)12659-1
Hiyoshi, H., Kodama, T., Iida, T. & Honda, T. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect. Immun. 78, 1772–1780 (2010).
doi: 10.1128/IAI.01051-09
Piñeyro, P. et al. Development of two animal models to study the function of Vibrio parahaemolyticus type III secretion systems. Infect. Immun. 78, 4551–4559 (2010).
doi: 10.1128/IAI.00461-10
Ritchie, J. M. et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog. 8, e1002593 (2012).
doi: 10.1371/journal.ppat.1002593
Hiyoshi, H. et al. VopV, an F-actin-binding type III secretion effector, is required for Vibrio parahaemolyticus-induced enterotoxicity. Cell Host Microbe 10, 401–409 (2011).
doi: 10.1016/j.chom.2011.08.014
Honda, T. & Iida, T. The pathogenicity of Vibrio parahaemolyticus and the role of the theromostable direct hemolysin and related hemolysins. Rev. Med. Microbiol. 4, 106–113 (1993).
doi: 10.1097/00013542-199304000-00006
Yanagihara, I. et al. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J. Biol. Chem. 285, 16267–1674 (2010).
doi: 10.1074/jbc.M109.074526
Sory, M. P. & Cornelis, G. R. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14, 583–594 (1994).
doi: 10.1111/j.1365-2958.1994.tb02191.x
Kodama, T. et al. Identification of two translocon proteins of Vibrio parahaemolyticus type III secretion system 2. Infect. Immun. 76, 4282–4289 (2008).
doi: 10.1128/IAI.01738-07
Gotoh, K. et al. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS ONE 5, e13365 (2010).
doi: 10.1371/journal.pone.0013365
Okada, R. et al. The Vibrio parahaemolyticus effector VopC mediates Cdc42-dependent invasion of cultured cells but is not required for pathogenicity in an animal model of infection. Cell. Microbiol. 16, 938–947 (2014).
doi: 10.1111/cmi.12252
Kaneda, Y., Yamamoto, S. & Nakashima, T. Development of HVJ envelope vector and its application to gene therapy. Adv. Genet. 53, 307–332 (2005).
doi: 10.1016/S0065-2660(05)53012-8
Paetzel, M. Structure and mechanism of Escherichia coli type I signal peptidase. Biochim. Biophys. Acta 1843, 1497–1508 (2014).
doi: 10.1016/j.bbamcr.2013.12.003
Shimohata, N. et al. SecY alterations that impair membrane protein folding and generate a membrane stress. J. Cell Biol. 176, 307–317 (2007).
doi: 10.1083/jcb.200611121
Inada, T., Court, D. L., Ito, K. & Nakamura, Y. Conditionally lethal amber mutations in leader peptidase gene of Escherichia coli. J. Bacteriol. 171, 585–587 (1989).
doi: 10.1128/jb.171.1.585-587.1989
Akeda, Y. et al. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC. FEMS Microbiol. Lett. 324, 156–164 (2011).
doi: 10.1111/j.1574-6968.2011.02399.x
Los, F. C. O. et al. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 77, 173–207 (2013).
doi: 10.1128/MMBR.00052-12
Ingólfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).
doi: 10.1021/ja507832e
Sears, C. L. & Kaper, J. B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60, 167–215 (1996).
pubmed: 8852900
pmcid: 239424
Ito, K. The major pathways of protein translocation across membranes. Genes Cells 1, 337–346 (1996).
doi: 10.1046/j.1365-2443.1996.34034.x
Okada, N. et al. Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect. Immun. 77, 904–913 (2009).
doi: 10.1128/IAI.01184-08
Ivankov, D. N. et al. How many signal peptides are there in bacteria? Envrion. Microbiol. 15, 983–990 (2013).
doi: 10.1111/1462-2920.12105
Park, K. S. et al. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72, 6659–6665 (2004).
doi: 10.1128/IAI.72.11.6659-6665.2004
Ishihara, M. et al. Purification of a serine protease of Vibrio parahaemolyticus and its characterization. Microbiol. Immunol. 46, 298–303 (2002).
doi: 10.1111/j.1348-0421.2002.tb02699.x
Kodama, T. et al. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell. Microbiol. 9, 2598–2609 (2007).
doi: 10.1111/j.1462-5822.2007.00980.x
Martinez, J. J. et al. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).
doi: 10.1093/emboj/19.12.2803
Okada, R., Matsuda, S. & Iida, T. Vibrio parahaemolyticus VtrA is a membrane-bound regulator and is activated via oligomerization. PLoS ONE 12, e0187846 (2017).
doi: 10.1371/journal.pone.0187846
Matsuda, S. et al. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H
doi: 10.1371/journal.ppat.1002803