Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
05 2019
Historique:
received: 04 10 2018
accepted: 10 01 2019
pubmed: 20 2 2019
medline: 27 6 2019
entrez: 20 2 2019
Statut: ppublish

Résumé

Many Gram-negative pathogens utilize dedicated secretion systems to export virulence factors such as exotoxins and effectors

Identifiants

pubmed: 30778145
doi: 10.1038/s41564-019-0368-y
pii: 10.1038/s41564-019-0368-y
doi:

Substances chimiques

Bacterial Proteins 0
Bacterial Toxins 0
Hemolysin Proteins 0
Type III Secretion Systems 0
thermostable direct hemolysin 135433-21-5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

781-788

Références

Costra, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insight. Nat. Rev. Microbiol. 13, 343–359 (2015).
doi: 10.1038/nrmicro3456
Green, E. R. & Mecsas, J. Bacterial secretion systems: an overview. Microbiol. Spectr. 4, VMBF-0012-2015 (2016).
Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336–351 (2012).
doi: 10.1038/nrmicro2762
Galán, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).
doi: 10.1146/annurev-micro-092412-155725
Stathopoulos, C. et al. Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect. 2, 1061–1072 (2000).
doi: 10.1016/S1286-4579(00)01260-0
Daniels, N. A. et al. Vibrio parahaemolyticus infections in the United States, 1973–1998. J. Infect. Dis. 181, 1661–1666 (2000).
doi: 10.1086/315459
Nair, G. B. et al. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 20, 39–48 (2007).
doi: 10.1128/CMR.00025-06
Makino, K. et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from V. cholerae. Lancet 361, 743–749 (2003).
doi: 10.1016/S0140-6736(03)12659-1
Hiyoshi, H., Kodama, T., Iida, T. & Honda, T. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect. Immun. 78, 1772–1780 (2010).
doi: 10.1128/IAI.01051-09
Piñeyro, P. et al. Development of two animal models to study the function of Vibrio parahaemolyticus type III secretion systems. Infect. Immun. 78, 4551–4559 (2010).
doi: 10.1128/IAI.00461-10
Ritchie, J. M. et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog. 8, e1002593 (2012).
doi: 10.1371/journal.ppat.1002593
Hiyoshi, H. et al. VopV, an F-actin-binding type III secretion effector, is required for Vibrio parahaemolyticus-induced enterotoxicity. Cell Host Microbe 10, 401–409 (2011).
doi: 10.1016/j.chom.2011.08.014
Honda, T. & Iida, T. The pathogenicity of Vibrio parahaemolyticus and the role of the theromostable direct hemolysin and related hemolysins. Rev. Med. Microbiol. 4, 106–113 (1993).
doi: 10.1097/00013542-199304000-00006
Yanagihara, I. et al. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J. Biol. Chem. 285, 16267–1674 (2010).
doi: 10.1074/jbc.M109.074526
Sory, M. P. & Cornelis, G. R. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14, 583–594 (1994).
doi: 10.1111/j.1365-2958.1994.tb02191.x
Kodama, T. et al. Identification of two translocon proteins of Vibrio parahaemolyticus type III secretion system 2. Infect. Immun. 76, 4282–4289 (2008).
doi: 10.1128/IAI.01738-07
Gotoh, K. et al. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS ONE 5, e13365 (2010).
doi: 10.1371/journal.pone.0013365
Okada, R. et al. The Vibrio parahaemolyticus effector VopC mediates Cdc42-dependent invasion of cultured cells but is not required for pathogenicity in an animal model of infection. Cell. Microbiol. 16, 938–947 (2014).
doi: 10.1111/cmi.12252
Kaneda, Y., Yamamoto, S. & Nakashima, T. Development of HVJ envelope vector and its application to gene therapy. Adv. Genet. 53, 307–332 (2005).
doi: 10.1016/S0065-2660(05)53012-8
Paetzel, M. Structure and mechanism of Escherichia coli type I signal peptidase. Biochim. Biophys. Acta 1843, 1497–1508 (2014).
doi: 10.1016/j.bbamcr.2013.12.003
Shimohata, N. et al. SecY alterations that impair membrane protein folding and generate a membrane stress. J. Cell Biol. 176, 307–317 (2007).
doi: 10.1083/jcb.200611121
Inada, T., Court, D. L., Ito, K. & Nakamura, Y. Conditionally lethal amber mutations in leader peptidase gene of Escherichia coli. J. Bacteriol. 171, 585–587 (1989).
doi: 10.1128/jb.171.1.585-587.1989
Akeda, Y. et al. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC. FEMS Microbiol. Lett. 324, 156–164 (2011).
doi: 10.1111/j.1574-6968.2011.02399.x
Los, F. C. O. et al. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 77, 173–207 (2013).
doi: 10.1128/MMBR.00052-12
Ingólfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).
doi: 10.1021/ja507832e
Sears, C. L. & Kaper, J. B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60, 167–215 (1996).
pubmed: 8852900 pmcid: 239424
Ito, K. The major pathways of protein translocation across membranes. Genes Cells 1, 337–346 (1996).
doi: 10.1046/j.1365-2443.1996.34034.x
Okada, N. et al. Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect. Immun. 77, 904–913 (2009).
doi: 10.1128/IAI.01184-08
Ivankov, D. N. et al. How many signal peptides are there in bacteria? Envrion. Microbiol. 15, 983–990 (2013).
doi: 10.1111/1462-2920.12105
Park, K. S. et al. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72, 6659–6665 (2004).
doi: 10.1128/IAI.72.11.6659-6665.2004
Ishihara, M. et al. Purification of a serine protease of Vibrio parahaemolyticus and its characterization. Microbiol. Immunol. 46, 298–303 (2002).
doi: 10.1111/j.1348-0421.2002.tb02699.x
Kodama, T. et al. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell. Microbiol. 9, 2598–2609 (2007).
doi: 10.1111/j.1462-5822.2007.00980.x
Martinez, J. J. et al. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).
doi: 10.1093/emboj/19.12.2803
Okada, R., Matsuda, S. & Iida, T. Vibrio parahaemolyticus VtrA is a membrane-bound regulator and is activated via oligomerization. PLoS ONE 12, e0187846 (2017).
doi: 10.1371/journal.pone.0187846
Matsuda, S. et al. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H
doi: 10.1371/journal.ppat.1002803

Auteurs

Shigeaki Matsuda (S)

Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan. matsudas@biken.osaka-u.ac.jp.

Ryu Okada (R)

Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
The Research Foundation for Microbial Diseases of Osaka University, Kagawa, Japan.

Sarunporn Tandhavanant (S)

Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Hirotaka Hiyoshi (H)

Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.

Kazuyoshi Gotoh (K)

Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Tetsuya Iida (T)

Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.

Toshio Kodama (T)

Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan. kodama@biken.osaka-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH