Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models.
Abortion, Spontaneous
/ immunology
Animals
CD4-Positive T-Lymphocytes
/ immunology
Cell Differentiation
Cell Proliferation
Cells, Cultured
Cytokines
/ metabolism
Disease Models, Animal
Female
Humans
Immune Tolerance
Immunomodulation
Immunotherapy
/ methods
Inflammation
Macrophages
/ immunology
Male
Mesenchymal Stem Cells
/ physiology
Mice
Mice, Inbred CBA
Mice, Inbred DBA
Pregnancy
Th2 Cells
/ immunology
Journal
Cellular & molecular immunology
ISSN: 2042-0226
Titre abrégé: Cell Mol Immunol
Pays: China
ID NLM: 101242872
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
14
08
2018
accepted:
21
01
2019
pubmed:
20
2
2019
medline:
29
8
2020
entrez:
20
2
2019
Statut:
ppublish
Résumé
Mesenchymal stem cells (MSCs), which are pluripotent cells with immunomodulatory properties, have been considered good candidates for the therapy of several immune disorders, such as inflammatory bowel diseases, concanavalin A-induced liver injury, and graft-versus-host disease. The embryo is a natural allograft to the maternal immune system. A successful pregnancy depends on the timely extinction of the inflammatory response induced by embryo implantation, followed by the switch to a tolerant immune microenvironment in both the uterus and the system. Excessive infiltration of immune cells and serious inflammatory responses are triggers for embryo rejection, which results in miscarriage. Here, we demonstrated that adoptive transfer of MSCs could prevent fetal loss in a lipopolysaccharide (LPS)-induced abortion model and immune response-mediated spontaneous abortion model. The immunosuppressive MSCs alleviated excessive inflammation by inhibiting CD4
Identifiants
pubmed: 30778166
doi: 10.1038/s41423-019-0204-6
pii: 10.1038/s41423-019-0204-6
pmc: PMC6884632
doi:
Substances chimiques
Cytokines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
908-920Commentaires et corrections
Type : CommentIn
Références
Peng, Y. et al. Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10. Leukemia 29, 636–646 (2015).
doi: 10.1038/leu.2014.225
Dave, M. et al. Stem cells for murine interstitial cells of cajal suppress cellular immunity and colitis via prostaglandin E2 secretion. Gastroenterology 148, 978–990 (2015).
doi: 10.1053/j.gastro.2015.01.036
Chen, C. et al. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res. 27, 559–577 (2017).
doi: 10.1038/cr.2017.11
Meisel, R. et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103, 4619–4621 (2004).
doi: 10.1182/blood-2003-11-3909
Raghuvanshi, S., Sharma, P., Singh, S., Van Kaer, L. & Das, G. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 21653–21658 (2010).
doi: 10.1073/pnas.1007967107
Dhingra, S. et al. Preserving prostaglandin E2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores postinfarction ventricular function. Circulation 128, S69–S78 (2013).
doi: 10.1161/CIRCULATIONAHA.112.000324
Boumaza, I. et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J. Autoimmun. 32, 33–42 (2009).
doi: 10.1016/j.jaut.2008.10.004
Patel, S. A. et al. Role of mesenchymal stem cell-derived cancer cells through regulatory T cells: mesenchymal stem cells protect breast. J. Immunol. 184, 5885–5894 (2010).
doi: 10.4049/jimmunol.0903143
Park, H. J., Oh, S. H., Kim, H. N., Jung, Y. J. & Lee, P. H. Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol. 132, 685–701 (2016).
doi: 10.1007/s00401-016-1605-6
Lee, K. C., Lin, H. C., Huang, Y. H. & Hung, S. C. Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease. J. Hepatol. 63, 1405–1412 (2015).
doi: 10.1016/j.jhep.2015.07.035
Christiansen, O. B., Steffensen, R., Nielsen, H. S. & Varming, K. Multifactorial etiology of recurrent miscarriage and its scientific and clinical implications. Gynecol. Obstet. Invest. 66, 257–267 (2008).
doi: 10.1159/000149575
Chavan, A. R., Griffith, O. W. & Wagner, G. P. The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Curr. Opin. Genet. Dev. 47, 24–32 (2017).
doi: 10.1016/j.gde.2017.08.004
Arck, P. C. & Hecher, K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat. Med. 19, 548–556 (2013).
doi: 10.1038/nm.3160
Kanellopoulos-Langevin, C., Caucheteux, S. M., Verbeke, P. & Ojcius, D. M. Tolerance of the fetus by the maternal immune system: role of inflammatory mediators at the feto-maternal interface. Reprod. Biol. Endocrinol. 1, 121 (2003).
doi: 10.1186/1477-7827-1-121
Giakoumelou, S. et al. The role of infection in miscarriage. Hum. Reprod. Update 22, 116–133 (2016).
doi: 10.1093/humupd/dmv041
Girardi, G., Yarilin, D., Thurman, J. M., Holers, V. M. & Salmon, J. E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med. 203, 2165–2175 (2006).
doi: 10.1084/jem.20061022
Kwak-Kim, J., Bao, S., Lee, S. K., Kim, J. W. & Gilman-Sachs, A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am. J. Reprod. Immunol. 72, 129–140 (2014).
doi: 10.1111/aji.12234
Luna, R. L. et al. Sildenafil (Viagra ®) blocks inflammatory injury in LPS-induced mouse abortion: a potential prophylactic treatment against acute pregnancy loss? Placenta 36, 1122–1129 (2015).
doi: 10.1016/j.placenta.2015.07.133
Lee, A. J., Kandiah, N., Karimi, K., Clark, D. A. & Ashkar, A. A. Interleukin-15 is required for maximal lipopolysaccharide-induced abortion. J. Leukoc. Biol. 93, 905–912 (2013).
doi: 10.1189/jlb.0912442
Keating, A. Mesenchymal stromal cells: new directions. Cell Stem Cell 10, 709–716 (2012).
doi: 10.1016/j.stem.2012.05.015
Shi, Y. et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20, 510–518 (2010).
doi: 10.1038/cr.2010.44
Willis, G. R. et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med. 197, 104–116 (2018).
doi: 10.1164/rccm.201705-0925OC
Bai, M. et al. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int. 93, 814–825 (2018).
doi: 10.1016/j.kint.2017.08.030
Zhang, Y. et al. Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology 59, 671–682 (2014).
doi: 10.1002/hep.26670
Shi, Y. et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol. 14, 493–507 (2018).
doi: 10.1038/s41581-018-0023-5
Galipeau, J. & Sensebe, L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22, 824–833 (2018).
doi: 10.1016/j.stem.2018.05.004
Watschinger, K. et al. Tetrahydrobiopterin and alkylglycerol monooxygenase substantially alter the murine macrophage lipidome. Proc. Natl Acad. Sci. USA 112, 2431–2436 (2015).
doi: 10.1073/pnas.1414887112
Herd, H. L., Bartlett, K. T., Gustafson, J. A., McGill, L. D. & Ghandehari, H. Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials 53, 574–582 (2015).
doi: 10.1016/j.biomaterials.2015.02.070
Jiang, X., Du, M. R., Li, M. & Wang, H. Three macrophage subsets are identified in the uterus during early human pregnancy. Cell. Mol. Immunol. 15, 1027–1037 (2018).
doi: 10.1038/s41423-018-0008-0
Li Y., Li D., Du M. TIM-3: a crucial regulator of NK cells in pregnancy. Cell. Mol. Immunol. (2017). https://doi.org/10.1038/cmi.2017.85 .
Wong, L. F., Porter, T. F. & Scott, J. R. Immunotherapy for recurrent miscarriage. Cochrane Database Syst. Rev. 10, 1–50 (2014).
Singer, N. G. & Caplan, A. I. Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol. 6, 457–478 (2011).
doi: 10.1146/annurev-pathol-011110-130230
Zhang, Z. et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J. Gastroenterol. Hepatol. 27(Suppl 2), 112–120 (2012).
doi: 10.1111/j.1440-1746.2011.07024.x
Shi, M. et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl. Med. 1, 725–731 (2012).
doi: 10.5966/sctm.2012-0034
Wakitani, S. et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J. Tissue Eng. Regen. Med. 5, 146–150 (2011).
doi: 10.1002/term.299
He, Y. et al. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res. Ther. 9, 263 (2018).
doi: 10.1186/s13287-018-1008-9
Lee, H. J. et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J. Clin. Oncol. 25, 3198–3204 (2007).
doi: 10.1200/JCO.2006.10.3028
Du, H. & Taylor, H. S. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells 25, 2082–2086 (2007).
doi: 10.1634/stemcells.2006-0828
Du, H., Naqvi, H. & Taylor, H. S. Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium. Stem Cells Dev. 21, 3324–3331 (2012).
doi: 10.1089/scd.2011.0193
Mosna, F., Sensebe, L. & Krampera, M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 19, 1449–1470 (2010).
doi: 10.1089/scd.2010.0140
Ko, J. H. et al. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye. Proc. Natl Acad. Sci. USA 113, 158–163 (2016).
doi: 10.1073/pnas.1522905113
Prockop, D. J. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells 31, 2042–2046 (2013).
doi: 10.1002/stem.1400
Wang, G. et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ. 25, 1209–1223 (2018).
doi: 10.1038/s41418-017-0006-2
Su, J. et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 21, 388–396 (2014).
doi: 10.1038/cdd.2013.149
Lee, R. H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).
doi: 10.1016/j.stem.2009.05.003
Choi, H., Lee, R. H., Bazhanov, N., Oh, J. Y. & Prockop, D. J. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118, 330–338 (2011).
doi: 10.1182/blood-2010-12-327353
Qi, Y. et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin. J. Invest. Dermatol. 134, 526–537 (2014).
doi: 10.1038/jid.2013.328
Mittal, M. et al. TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury. Proc. Natl Acad. Sci. USA 113, E8151–E8158 (2016).
doi: 10.1073/pnas.1614935113
Song, H. B. et al. Mesenchymal stromal cells inhibit inflammatory lymphangiogenesis in the cornea by suppressing macrophage in a TSG-6-dependent manner. Mol. Ther. 26, 162–172 (2018).
doi: 10.1016/j.ymthe.2017.09.026
Valles, G. et al. Topographical cues regulate the crosstalk between MSCs and macrophages. Biomaterials 37, 124–133 (2015).
doi: 10.1016/j.biomaterials.2014.10.028
Kota, D. J., Wiggins, L. L., Yoon, N. & Lee, R. H. TSG-6 produced by hMSCs delays the onset of autoimmune diabetes by suppressing Th1 development and enhancing tolerogenicity. Diabetes 62, 2048–2058 (2013).
doi: 10.2337/db12-0931
Espagnolle, N., Balguerie, A., Arnaud, E., Sensebé, L. & Varin, A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Rep. 8, 961–976 (2017).
doi: 10.1016/j.stemcr.2017.02.008
Amouzegar, A., Mittal, S. K., Sahu, A., Sahu, S. K. & Chauhan, S. K. Mesenchymal stem cells modulate differentiation of myeloid progenitor cells during inflammation. Stem Cells 35, 1532–1541 (2017).
doi: 10.1002/stem.2611
Wisniewski, H. G. & Vilcek, J. TSG-6: an IL-1/TNF-inducible protein with anti-inflammatory activity. Cytokine Growth Factor Rev. 8, 143–156 (1997).
doi: 10.1016/S1359-6101(97)00008-7
Jenmalm, M. C., Cherwinski, H., Bowman, E. P., Phillips, J. H. & Sedgwick, J. D. Regulation of myeloid cell function through the CD200 receptor. J. Immunol. 176, 191–199 (2006).
doi: 10.4049/jimmunol.176.1.191
Wright, G. J. et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13, 233–242 (2000).
doi: 10.1016/S1074-7613(00)00023-6
Sheng, H. et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through upregulation of B7-H1. Cell Res. 18, 846–857 (2008).
doi: 10.1038/cr.2008.80