A Smart Nanovector for Cancer Targeted Drug Delivery Based on Graphene Quantum Dots.
anticancer therapy
drug delivery systems
graphene quantum dots
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
18 Feb 2019
18 Feb 2019
Historique:
received:
09
01
2019
revised:
08
02
2019
accepted:
10
02
2019
entrez:
21
2
2019
pubmed:
20
2
2019
medline:
20
2
2019
Statut:
epublish
Résumé
Graphene quantum dots (GQD), the new generation members of graphene-family, have shown promising applications in anticancer therapy. In this study, we report the synthesis of a fluorescent and biocompatible nanovector, based on GQD, for the targeted delivery of an anticancer drug with benzofuran structure (BFG) and bearing the targeting ligand riboflavin (RF, vitamin B2). The highly water-dispersible nanoparticles, synthesized from multi-walled carbon nanotubes (MWCNT) by prolonged acidic treatment, were linked covalently to the drug by means of a cleavable PEG linker while the targeting ligand RF was conjugated to the GQD by π⁻π interaction using a pyrene linker. The cytotoxic effect of the synthesized drug delivery system (DDS) GQD-PEG-BFG@Pyr-RF was tested on three cancer cell lines and this effect was compared with that exerted by the same nanovector lacking the RF ligand (GQD-PEG-BFG) or the anticancer drug (GQD@Pyr-RF). The results of biological tests underlined the low cytotoxicity of the GQD sample and the cytotoxic activity of the DDS against the investigated cancer cell lines with a higher or similar potency to that exerted by the BFG alone, thus opening new possibilities for the use of this drug or other anticancer agents endowed of cytotoxicity and serious side effects.
Identifiants
pubmed: 30781623
pii: nano9020282
doi: 10.3390/nano9020282
pmc: PMC6409783
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Nat Nanotechnol. 2013 Apr;8(4):235-46
pubmed: 23552117
CA Cancer J Clin. 2013 Nov-Dec;63(6):395-418
pubmed: 24114523
Pharmaceutics. 2017 Oct 14;9(4):
pubmed: 29036899
Chemistry. 2018 Oct 22;24(59):15706-15724
pubmed: 29572992
Int J Nanomedicine. 2017 Oct 05;12:7291-7309
pubmed: 29042776
Chem Commun (Camb). 2011 Oct 7;47(37):10182-8
pubmed: 21776531
J Mater Chem B. 2017 Aug 28;5(32):6425-6427
pubmed: 32264408
Chem Commun (Camb). 2005 Jan 14;(2):271-3
pubmed: 15724209
J Am Chem Soc. 2008 Aug 20;130(33):10876-7
pubmed: 18661992
Chem Soc Rev. 2017 Jul 17;46(14):4218-4244
pubmed: 28585944
Phys Chem Chem Phys. 2017 Jun 21;19(24):16038-16046
pubmed: 28597887
Curr Med Chem. 2013;20(11):1333-54
pubmed: 23432581
Adv Drug Deliv Rev. 2016 Oct 1;105(Pt B):242-254
pubmed: 27233213
Int J Pharm. 2016 Dec 30;515(1-2):30-36
pubmed: 27720871
Expert Opin Drug Deliv. 2017 Jan;14(1):75-92
pubmed: 27339650
J Mater Chem B. 2017 Aug 28;5(32):6471-6489
pubmed: 32264412
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12320-64
pubmed: 25294565
Toxicol In Vitro. 2015 Mar;29(2):352-62
pubmed: 25499066
Nat Biotechnol. 2015 Sep;33(9):941-51
pubmed: 26348965
Langmuir. 2018 Jan 16;34(2):603-611
pubmed: 29275632
DNA Repair (Amst). 2017 Mar;51:20-30
pubmed: 28108275
Adv Drug Deliv Rev. 2009 Jun 21;61(6):428-37
pubmed: 19376175
Int J Pharm. 2017 Feb 25;518(1-2):185-192
pubmed: 28057464
Chem Rev. 2016 May 11;116(9):5464-519
pubmed: 27033639
Chem Rev. 2017 Feb 8;117(3):1826-1914
pubmed: 28075573
Mol Pharm. 2004 Jul-Aug;1(4):257-66
pubmed: 15981585
Theranostics. 2016 Jun 15;6(9):1393-402
pubmed: 27375787
Chem Commun (Camb). 2012 Oct 21;48(82):10177-9
pubmed: 22932850
Bioorg Med Chem Lett. 2010 Sep 1;20(17):5191-4
pubmed: 20659800
Sci Rep. 2013 Oct 04;3:2852
pubmed: 24092333
Bioconjug Chem. 2013 Mar 20;24(3):387-97
pubmed: 23425155