p38 MAPK pathway-dependent SUMOylation of Elk-1 and phosphorylation of PIAS2 correlate with the downregulation of Elk-1 activity in heat-stressed HeLa cells.
Elk-1
Heat stress
PIAS2
Phosphorylation
SUMOylation
p38 MAPK
Journal
Cell stress & chaperones
ISSN: 1466-1268
Titre abrégé: Cell Stress Chaperones
Pays: Netherlands
ID NLM: 9610925
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
30
05
2018
accepted:
15
01
2019
revised:
10
01
2019
pubmed:
21
2
2019
medline:
31
8
2019
entrez:
21
2
2019
Statut:
ppublish
Résumé
Stress-activated and mitogen-activated protein kinases (MAPKs) regulate gene expression by post-translational modifications of transcription factors. Elk-1, a transcription factor that regulates the expression of immediate early genes, is amenable to regulation by all the three mammalian MAPKs. In the present report, using inhibitors specific for different MAPK pathways, we show that during exposure of HeLa cells to heat stress, Elk-1 is SUMOylated with SUMO1 by p38 MAPK pathway-dependent mechanisms. Elk-1-phosphorylation levels were significantly reduced under similar conditions. We also show that transcriptional activity of Elk-1 as assessed by luciferase reporter expression and qPCR estimation of the expression of genes regulated by Elk-1 was downregulated upon exposure to heat stress; this downregulation was reversed when heat exposure was performed in the presence of either SB203580 (p38 MAPK inhibitor) or ginkgolic acid (inhibitor of SUMOylation). Elk-1 induced transcription is also regulated by PIAS2 which acts as a coactivator upon the activation of extracellular signal-regulated kinases (ERKs) and as a corepressor upon its phosphorylation by p38 MAPK. Since heat stress activates the p38 MAPK pathway, we determined if PIAS2 was phosphorylated in heat-stressed HeLa cells. Our studies indicate that in HeLa cells exposed to heat stress, PIAS2 is phosphorylated by p38 MAPK pathway-dependent mechanisms. Collectively, the results presented demonstrate that in heat-stressed HeLa cells, p38 MAPK pathway-dependent SUMOylation of Elk-1 and phosphorylation of PIAS2 correlate with the downregulation of transactivation by Elk-1.
Identifiants
pubmed: 30783905
doi: 10.1007/s12192-019-00974-4
pii: 10.1007/s12192-019-00974-4
pmc: PMC6439063
doi:
Substances chimiques
ELK1 protein, human
0
PIAS2 protein, human
0
Protein Inhibitors of Activated STAT
0
ets-Domain Protein Elk-1
0
p38 Mitogen-Activated Protein Kinases
EC 2.7.11.24
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
393-407Références
Biochem J. 2010 May 13;428(2):247-54
pubmed: 20337593
Cell Commun Signal. 2012 Mar 09;10:6
pubmed: 22404972
Eur J Neurosci. 2006 Jul;24(2):555-63
pubmed: 16903857
J Biol Chem. 2016 Dec 9;291(50):25983-25998
pubmed: 27793987
Cell Mol Life Sci. 2009 Sep;66(18):3029-41
pubmed: 19526197
Physiol Rev. 2002 Apr;82(2):373-428
pubmed: 11917093
Science. 2016 Oct 14;354(6309):233-237
pubmed: 27738173
Mol Cell. 2003 Jul;12(1):63-74
pubmed: 12887893
Biochem J. 2002 Oct 15;367(Pt 2):525-32
pubmed: 12171600
Mol Cell. 2006 May 19;22(4):477-87
pubmed: 16713578
Cold Spring Harb Protoc. 2017 Oct 3;2017(10):pdb.top096198
pubmed: 28974659
Cell Div. 2015 Jun 20;10:4
pubmed: 26101541
Cell. 1993 Apr 23;73(2):381-93
pubmed: 8386592
EMBO J. 1995 Dec 1;14(23):5957-64
pubmed: 8846788
Genes Genomics. 2018 Mar;40(3):243-251
pubmed: 29892795
EMBO J. 2001 Aug 15;20(16):4360-9
pubmed: 11500363
J Biol Chem. 2005 Jan 14;280(2):1149-55
pubmed: 15531578
EMBO J. 1997 Jan 15;16(2):295-305
pubmed: 9029150
Mol Cell. 2016 Apr 7;62(1):63-78
pubmed: 27052732
Br J Haematol. 2017 Jun;177(5):726-740
pubmed: 28340282
Endocr Rev. 2001 Apr;22(2):153-83
pubmed: 11294822
EMBO J. 2005 Jun 15;24(12):2161-71
pubmed: 15920481
Mol Cell Biol. 2004 Dec;24(23):10340-51
pubmed: 15542842
Bioessays. 2015 Oct;37(10):1095-105
pubmed: 26354225
BMC Genomics. 2010 Mar 01;11:144
pubmed: 20187982
Oncogene. 2007 May 14;26(22):3113-21
pubmed: 17496910
Biochem J. 2004 Apr 1;379(Pt 1):133-9
pubmed: 14680475
EMBO J. 1996 Aug 15;15(16):4156-64
pubmed: 8861944
Biol Psychiatry. 2013 Oct 1;74(7):511-9
pubmed: 23702428
J Biol Chem. 2013 Sep 27;288(39):28152-62
pubmed: 23940030
EMBO J. 2013 Mar 20;32(6):791-804
pubmed: 23395904
J Biol Chem. 1984 Oct 10;259(19):11882-9
pubmed: 6384217
EMBO J. 1993 Dec 15;12(13):5097-104
pubmed: 8262053
J Biol Chem. 2000 Mar 3;275(9):6252-8
pubmed: 10692421
J Biol Chem. 1999 Jan 15;274(3):1801-13
pubmed: 9880563
J Biol Chem. 2004 Jul 30;279(31):32262-8
pubmed: 15166219
Chem Biol. 2009 Feb 27;16(2):133-40
pubmed: 19246003
Biochem Soc Trans. 2002 Apr;30(2):1-9
pubmed: 12023815
Front Neurosci. 2011 Mar 16;5:35
pubmed: 21441990
EMBO J. 1995 Mar 1;14(5):951-62
pubmed: 7889942
Sci Rep. 2014 Mar 26;4:4469
pubmed: 24667845
Cold Spring Harb Perspect Biol. 2012 Nov 01;4(11):
pubmed: 23125017
Genome Res. 2009 Nov;19(11):1963-73
pubmed: 19687146
Cancer Res. 2014 May 1;74(9):2617-29
pubmed: 24732433
Biochim Biophys Acta. 2007 Aug;1773(8):1358-75
pubmed: 17481747
Int J Biochem Cell Biol. 2003 Aug;35(8):1210-26
pubmed: 12757758
Cell. 1994 Sep 23;78(6):1027-37
pubmed: 7923353
Curr Opin Genet Dev. 1994 Feb;4(1):96-101
pubmed: 8193547
Oncotarget. 2015 Oct 6;6(30):29860-76
pubmed: 26342199
Microbiol Mol Biol Rev. 2004 Jun;68(2):320-44
pubmed: 15187187
Biochim Biophys Acta. 2007 Aug;1773(8):1213-26
pubmed: 17112607
IUBMB Life. 2014 Feb;66(2):71-7
pubmed: 24470405
Annu Rev Biochem. 1986;55:1151-91
pubmed: 2427013