Effects of feed intake level on efficiency of microbial protein synthesis and nitrogen balance in Boran steers consuming tropical poor-quality forage.


Journal

Archives of animal nutrition
ISSN: 1477-2817
Titre abrégé: Arch Anim Nutr
Pays: England
ID NLM: 101222433

Informations de publication

Date de publication:
Apr 2019
Historique:
pubmed: 21 2 2019
medline: 30 5 2019
entrez: 21 2 2019
Statut: ppublish

Résumé

This study aimed at evaluating the effects of feed intake level on the efficiency of rumen microbial protein synthesis (EMPS), nitrogen (N) excretion, and N balance in twelve 18-months old Boran (Bos indicus) steers with initial average liveweight of 183 kg (standard deviation (SD) 15.2). The experiment followed a 4 × 4 complete Latin Square design with four dietary treatments tested in four periods. Each period ran for 5 weeks with 3 weeks of adaptation and 2 weeks of sample collection; separated by 2 weeks of re-feeding. Steers were fed at 100%, 80%, 60%, and 40% of their metabolisable energy requirement for maintenance (MER, referred to as MER100, MER80, MER60, and MER40, respectively). Steers receiving MER80, MER60, and MER40 were only fed Rhodes grass hay. MER100 steers were offered Rhodes grass hay at 80% of their MER and cottonseed meal and sugarcane molasses at each 10% of MER. Mean daily dry matter intake differed between treatments (p < 0.001) and ranged between 2.1 kg/animal (SD 0.13) in MER40 and 4.5 kg/animal (SD 0.31) in MER100. Urinary N excretion and N balance did not differ between MER80, MER60, and MER40. According to contrast test, declining feed intake level from MER80 to MER40 reduced duodenal microbial crude protein flow (p < 0.001), but did not alter the EMPS (g microbial N/kg digestible organic matter intake). Yet, if scaled to N intake, EMPS increased (p < 0.049), whereas total N and faecal N excretions decreased linearly with declining intake level (p < 0.001 for both variables). At similar grass hay intake, duodenal microbial crude protein flow was 41% higher in MER100 than in MER80 steers (p < 0.001). In cattle offered poor-quality tropical forage below their MER, the very low EMPS and thus microbial protein supply aggravate the negative effects of low dietary nutrient and energy intakes in periods of feed shortage.

Identifiants

pubmed: 30784311
doi: 10.1080/1745039X.2019.1572343
doi:

Substances chimiques

Bacterial Proteins 0
Nitrogen N762921K75

Types de publication

Clinical Trial, Veterinary Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

140-157

Auteurs

Shimels Eshete Wassie (SE)

a Animal Nutrition and Rangeland Management, Institute of Agricultural Sciences in the Tropics , University of Hohenheim , Stuttgart , Germany.

Asep Indra Munawar Ali (AIM)

b Animal Husbandry in the Tropics and Subtropics , University of Kassel/University of Goettingen , Witzenhausen , Germany.

Daniel Korir (D)

c Mazingira Centre, International Livestock Research Institute , Nairobi , Kenya.

Klaus Butterbach-Bahl (K)

c Mazingira Centre, International Livestock Research Institute , Nairobi , Kenya.

John Goopy (J)

c Mazingira Centre, International Livestock Research Institute , Nairobi , Kenya.

Lutz Merbold (L)

c Mazingira Centre, International Livestock Research Institute , Nairobi , Kenya.

Eva Schlecht (E)

b Animal Husbandry in the Tropics and Subtropics , University of Kassel/University of Goettingen , Witzenhausen , Germany.

Uta Dickhoefer (U)

a Animal Nutrition and Rangeland Management, Institute of Agricultural Sciences in the Tropics , University of Hohenheim , Stuttgart , Germany.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH