Agreement between magnetic resonance imaging and computed tomography in the postnatal evaluation of congenital lung malformations: a pilot study.
Bronchogenic Cyst
/ diagnostic imaging
Bronchopulmonary Sequestration
/ diagnostic imaging
Contrast Media
Female
Humans
Infant
Infant, Newborn
Lung
/ abnormalities
Lung Diseases
/ diagnostic imaging
Magnetic Resonance Imaging
/ methods
Male
Pilot Projects
Postnatal Care
/ methods
Reproducibility of Results
Sensitivity and Specificity
Tomography, X-Ray Computed
/ methods
Bronchopulmonary sequestration
Cystic adenomatoid, congenital
Lung malformation
Magnetic resonance
Pediatrics
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Sep 2019
Sep 2019
Historique:
received:
27
08
2018
accepted:
24
01
2019
revised:
20
12
2018
pubmed:
24
2
2019
medline:
4
12
2019
entrez:
24
2
2019
Statut:
ppublish
Résumé
To compare postnatal magnetic resonance imaging (MRI) with the reference standard computed tomography (CT) in the identification of the key features for diagnosing different types of congenital lung malformation (CLM). Respiratory-triggered T2-weighted single-shot turbo spin echo (ss-TSE), respiratory-triggered T1-weighted turbo field echo (TFE), balanced fast field echo (BFFE), and T2-weighted MultiVane sequences were performed at 1.5 T on 20 patients prospectively enrolled. Two independent radiologists examined the postnatal CT and MRI evaluating the presence of cysts, hyperinflation, solid component, abnormal arteries and/or venous drainage, and bronchocele. Diagnostic performance of MRI was calculated and the agreement between the findings was assessed using the McNemar-Bowker test. Interobserver agreement was measured with the kappa coefficient. CT reported five congenital pulmonary airway malformations (CPAMs), eight segmental bronchial atresias, five bronchopulmonary sequestrations (BPS), one congenital lobar overinflation, one bronchogenic cyst, and three hybrid lesions. MRI reported the correct diagnosis in 19/20 (95%) patients and the malformation was correctly classified in 22/23 cases (96%). MRI correctly identified all the key findings described on the CT except for the abnormal vascularization (85.7% sensitivity, 100% specificity, 100% PPV, 94.1% NPV, 95% accuracy for arterial vessels; 57.1% sensitivity, 100% specificity, 100% PPV, 84.2% NPV, 87% accuracy for venous drainage). MRI can represent an effective alternative to CT in the postnatal assessment of CLM. In order to further narrow the gap with CT, the use of contrast material and improvements in sequence design are needed to obtain detailed information on vascularization, which is essential for surgical planning. • Congenital lung malformations (CLMs) can be effectively studied by MRI avoiding radiation exposure. • Crucial features of CLM have similar appearance when comparing CT with MRI. • MRI performs very well in CLM except for aberrant vessel detection and characterization.
Identifiants
pubmed: 30796572
doi: 10.1007/s00330-019-06042-w
pii: 10.1007/s00330-019-06042-w
doi:
Substances chimiques
Contrast Media
0
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4544-4554Références
Pediatr Int. 1999 Oct;41(5):538-41
pubmed: 10530069
AJR Am J Roentgenol. 2001 Feb;176(2):289-96
pubmed: 11159059
Pediatrics. 2003 Oct;112(4):951-7
pubmed: 14523191
Pediatrics. 2003 Oct;112(4):971-2
pubmed: 14523193
Lancet. 2006 Mar 4;367(9512):766-80
pubmed: 16517277
Clin Radiol. 2007 Jun;62(6):507-17
pubmed: 17467387
Paediatr Anaesth. 2008 May;18(5):403-11
pubmed: 18363626
Pediatr Surg Int. 2008 Jun;24(6):643-57
pubmed: 18392629
Radiology. 2008 Jun;247(3):632-48
pubmed: 18487532
J Bras Pneumol. 2008 Sep;34(9):661-6
pubmed: 18982202
Semin Ultrasound CT MR. 2010 Apr;31(2):141-57
pubmed: 20304322
Radiol Med. 2011 Feb;116(1):133-51
pubmed: 20852957
Arch Dis Child Fetal Neonatal Ed. 2011 Mar;96(2):F86-91
pubmed: 20971721
AJR Am J Roentgenol. 2011 May;196(5):1040-6
pubmed: 21512069
Acta Radiol. 2011 Sep 1;52(7):767-73
pubmed: 21742785
Pediatr Radiol. 2011 Sep;41 Suppl 2:488-92
pubmed: 21847727
Radiol Clin North Am. 2011 Sep;49(5):921-48
pubmed: 21889015
J Magn Reson Imaging. 2011 Oct;34(4):750-7
pubmed: 21928308
Lancet. 2012 Aug 4;380(9840):499-505
pubmed: 22681860
Insights Imaging. 2012 Aug;3(4):373-86
pubmed: 22695943
Insights Imaging. 2012 Aug;3(4):345-53
pubmed: 22695952
Ann R Coll Surg Engl. 2013 Mar;95(2):144-7
pubmed: 23484999
AJR Am J Roentgenol. 2013 Jun;200(6):1352-7
pubmed: 23701075
Radiol Clin North Am. 2014 Jan;52(1):155-81
pubmed: 24267716
J Cardiovasc Comput Tomogr. 2013 Nov-Dec;7(6):354-60
pubmed: 24331930
Acta Paediatr. 2014 Aug;103(8):807-11
pubmed: 24673144
Dtsch Arztebl Int. 2014 Mar 14;111(11):181-7
pubmed: 24698073
Curr Opin Pediatr. 2014 Jun;26(3):315-9
pubmed: 24739492
Indian J Radiol Imaging. 2015 Jan-Mar;25(1):35-43
pubmed: 25709164
Radiographics. 2015 Sep-Oct;35(5):1539-54
pubmed: 26267677
Pediatr Pulmonol. 2016 Jan;51(1):34-41
pubmed: 26436668
J Magn Reson Imaging. 2016 May;43(5):1196-206
pubmed: 26546472
Eur Radiol. 2016 Nov;26(11):3811-3820
pubmed: 26843010
AJR Am J Roentgenol. 2016 Jun;206(6):1315-20
pubmed: 27010969
Eur Respir Rev. 2018 Feb 28;27(147):null
pubmed: 29491035
Eur J Pediatr. 1996 Sep;155(9):820-2
pubmed: 8874120