Top-Down Analysis of Proteins in Low Charge States.
Animals
Cattle
Horses
Humans
Hydrogen-Ion Concentration
Ions
/ chemistry
Models, Molecular
Osmolar Concentration
Photolysis
Protein Carbamylation
Protein Conformation
Protein Denaturation
Protein Folding
Proteins
/ chemistry
Protons
Spectrometry, Mass, Electrospray Ionization
/ methods
Ultraviolet Rays
Low charge state
Protein
Top-down
Ultraviolet photodissociation
Journal
Journal of the American Society for Mass Spectrometry
ISSN: 1879-1123
Titre abrégé: J Am Soc Mass Spectrom
Pays: United States
ID NLM: 9010412
Informations de publication
Date de publication:
Apr 2019
Apr 2019
Historique:
received:
18
11
2018
accepted:
30
01
2019
revised:
30
01
2019
pubmed:
24
2
2019
medline:
23
7
2019
entrez:
24
2
2019
Statut:
ppublish
Résumé
The impact of charging methods on the dissociation behavior of intact proteins in low charge states is investigated using HCD and 193 nm UVPD. Low charge states are produced for seven different proteins using the following four different methods: (1) proton transfer reactions of ions in high charge states generated from conventional denaturing solutions; (2) ESI of proteins in solutions of high ionic strength to enhance retention of folded native-like conformations; (3) ESI of proteins in high pH solutions to limit protonation; and (4) ESI of carbamylated proteins. Comparison of sequence coverages, degree of preferential cleavages, and types and distribution of fragment ions reveals a number of differences in the fragmentation patterns depending on the method used to generate the ions. More notable differences in these metrics are observed upon HCD than upon UVPD. The fragmentation caused by HCD is influenced more significantly by the presence/absence of mobile protons, a factor that modulates the degree of preferential cleavages and net sequence coverages. Carbamylation of the lysines and the N-terminus of the proteins alters the proton mobility by reducing the number of proton-sequestering, highly basic sites as evidenced by decreased preferential fragmentation C-terminal to Asp or N-terminal to Pro upon HCD. UVPD is less dependent on the method used to generate the low charge states and favors non-specific fragmentation, an outcome which is important for obtaining high sequence coverage of intact proteins.
Identifiants
pubmed: 30796622
doi: 10.1007/s13361-019-02146-1
pii: 10.1007/s13361-019-02146-1
pmc: PMC6447437
mid: NIHMS1525039
doi:
Substances chimiques
Ions
0
Proteins
0
Protons
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
704-717Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM121714
Pays : United States
Organisme : National Institutes of Health
ID : GM121714
Organisme : Welch Foundation
ID : F-1155
Références
J Proteome Res. 2018 Mar 2;17(3):1138-1145
pubmed: 29343059
Anal Chem. 2000 Dec 1;72(23):5804-13
pubmed: 11128940
J Am Soc Mass Spectrom. 2016 Jun;27(6):975-90
pubmed: 27052739
J Phys Chem B. 2012 Mar 15;116(10):3344-52
pubmed: 22315998
Anal Chem. 2014 Dec 16;86(24):12285-90
pubmed: 25420043
Nat Methods. 2007 Sep;4(9):709-12
pubmed: 17721543
Biochem Biophys Res Commun. 2014 Mar 21;445(4):683-93
pubmed: 24556311
J Am Soc Mass Spectrom. 2017 Sep;28(9):1823-1826
pubmed: 28702929
J Am Soc Mass Spectrom. 2017 Jul;28(7):1382-1391
pubmed: 28224394
Analyst. 2016 Jan 7;141(1):166-76
pubmed: 26596460
Nat Methods. 2013 Mar;10(3):186-7
pubmed: 23443629
Anal Chem. 2017 Jul 18;89(14):7607-7614
pubmed: 28636334
Anal Chem. 2010 Nov 15;82(22):9557-65
pubmed: 20979392
J Am Soc Mass Spectrom. 2017 Jan;28(1):69-76
pubmed: 27495285
Anal Chem. 2003 Sep 1;75(17):4525-33
pubmed: 14632060
J Am Soc Mass Spectrom. 2017 Jun;28(6):1203-1215
pubmed: 28374312
Anal Chem. 2014 Feb 18;86(4):2185-92
pubmed: 24447299
Anal Chem. 2001 Jul 15;73(14):3274-81
pubmed: 11476225
Anal Chem. 2016 Jan 5;88(1):30-51
pubmed: 26630359
Rapid Commun Mass Spectrom. 2012 May 30;26(10):1181-93
pubmed: 22499193
J Am Soc Mass Spectrom. 2017 Feb;28(2):332-340
pubmed: 27734326
Int J Mass Spectrom. 2009 Jun 1;283(1-3):9-16
pubmed: 20160958
J Am Soc Mass Spectrom. 2018 Jun;29(6):1323-1326
pubmed: 29626295
J Mass Spectrom. 2000 Dec;35(12):1399-406
pubmed: 11180630
Anal Chem. 2015 Feb 3;87(3):1812-20
pubmed: 25559986
J Am Soc Mass Spectrom. 2017 Sep;28(9):1827-1835
pubmed: 28710594
Anal Chem. 2018 May 1;90(9):5896-5902
pubmed: 29608288
J Proteome Res. 2016 Mar 4;15(3):976-82
pubmed: 26795204
J Am Soc Mass Spectrom. 2000 Nov;11(11):976-85
pubmed: 11073261
J Am Soc Mass Spectrom. 2014 Dec;25(12):2000-8
pubmed: 24658799
J Am Soc Mass Spectrom. 2009 Sep;20(9):1617-25
pubmed: 19481956
J Am Chem Soc. 2016 Aug 3;138(30):9581-8
pubmed: 27399988
J Proteome Res. 2004 Jan-Feb;3(1):46-54
pubmed: 14998162
J Am Soc Mass Spectrom. 2010 Jun;21(6):949-59
pubmed: 20303285
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33
pubmed: 15210983
Anal Chem. 2018 Jan 2;90(1):40-64
pubmed: 29172454
Proteomics. 2015 Apr;15(7):1235-8
pubmed: 25828799
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):499-519
pubmed: 27306313
Anal Chem. 2002 Mar 15;74(6):1360-70
pubmed: 11922305
Anal Chem. 2016 Jan 5;88(1):1008-16
pubmed: 26633754
Anal Chem. 2014 May 6;86(9):4455-62
pubmed: 24712886
Proteomics. 2012 Feb;12(4-5):530-42
pubmed: 22246976
Structure. 2016 Sep 6;24(9):1441-51
pubmed: 27499441
J Am Soc Mass Spectrom. 2016 Sep;27(9):1443-53
pubmed: 27206509
Anal Chim Acta. 2016 Oct 5;939:64-72
pubmed: 27639144
J Am Chem Soc. 2013 Aug 28;135(34):12646-51
pubmed: 23697802
J Am Soc Mass Spectrom. 2017 Aug;28(8):1587-1599
pubmed: 28374316