Multimodal Biosensing on Paper-Based Platform Fabricated by Plasmonic Calligraphy Using Gold Nanobypiramids Ink.

LSPR MEF SERS biodetection nanoplatform plasmonic paper

Journal

Frontiers in chemistry
ISSN: 2296-2646
Titre abrégé: Front Chem
Pays: Switzerland
ID NLM: 101627988

Informations de publication

Date de publication:
2019
Historique:
received: 02 11 2018
accepted: 21 01 2019
entrez: 26 2 2019
pubmed: 26 2 2019
medline: 26 2 2019
Statut: epublish

Résumé

In this work, we design new plasmonic paper-based nanoplatforms with interesting capabilities in terms of sensitivity, efficiency, and reproducibility for promoting multimodal biodetection via Localized Surface Plasmon Resonance (LSPR), Surface Enhanced Raman Spectroscopy (SERS), and Metal Enhanced Fluorescence (MEF). To succeed, we exploit the unique optical properties of gold nanobipyramids (AuBPs) deposited onto the cellulose fibers via plasmonic calligraphy using a commercial pen. The first step of the biosensing protocol was to precisely graft the previously chemically-formed p-aminothiophenol@Biotin system, as active recognition element for target streptavidin detection, onto the plasmonic nanoplatform. The specific capture of the target protein was successfully demonstrated using three complementary sensing techniques. As a result, while the LSPR based sensing capabilities of the nanoplatform were proved by successive 13-18 nm red shifts of the longitudinal LSPR associated with the change of the surface RI after each step. By employing the ultrasensitive SERS technique, we were able to indirectly confirm the molecular identification of the biotin-streptavidin interaction due to the protein fingerprint bands assigned to amide I, amide III, and Trp vibrations. Additionally, the formed biotin-streptavidin complex acted as a spacer to ensure an optimal distance between the AuBP surface and the Alexa 680 fluorophore for achieving a 2-fold fluorescence emission enhancement of streptavidin@Alexa 680 on the biotinylated nanoplatform compared to the same complex on bare paper (near the plasmonic lines), implementing thus a novel MEF sensing nanoplatform. Finally, by integrating multiple LSPR, SERS, and MEF nanosensors with multiplex capability into a single flexible and portable plasmonic nanoplatform, we could overcome important limits in the field of portable point-of-care diagnostics.

Identifiants

pubmed: 30800650
doi: 10.3389/fchem.2019.00055
pmc: PMC6375850
doi:

Types de publication

Journal Article

Langues

eng

Pagination

55

Références

ACS Sens. 2018 Jan 26;3(1):222-229
pubmed: 29284267
Curr Opin Chem Biol. 2005 Oct;9(5):538-44
pubmed: 16129649
Sci Rep. 2017 May 30;7(1):2480
pubmed: 28559536
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):3753-3762
pubmed: 30609355
Anal Chem. 2011 Dec 1;83(23):8953-8
pubmed: 22017379
Nat Nanotechnol. 2006 Nov;1(2):126-30
pubmed: 18654164
ACS Nano. 2018 Jul 24;12(7):7100-7108
pubmed: 29920065
Anal Chem. 2014 Dec 2;86(23):11714-21
pubmed: 25350497
Langmuir. 2011 Feb 15;27(4):1494-8
pubmed: 21244074
Anal Chem. 2011 Jun 1;83(11):4178-83
pubmed: 21513305
J Phys Chem B. 2005 Dec 1;109(47):22192-200
pubmed: 16853888
Langmuir. 2012 Jul 10;28(27):10152-63
pubmed: 22568517
Nanoscale. 2017 Oct 26;9(41):16005-16011
pubmed: 29022633
Bioconjug Chem. 2009 May 20;20(5):994-1001
pubmed: 19402705
Biomacromolecules. 2005 Mar-Apr;6(2):612-26
pubmed: 15762621
Anal Chem. 2018 Jul 17;90(14):8567-8575
pubmed: 29902917
Anal Chem. 2014 Oct 21;86(20):10406-14
pubmed: 25242013
Sensors (Basel). 2012;12(9):11505-26
pubmed: 23112667
Nanotechnology. 2012 Apr 13;23(14):145707
pubmed: 22433232
Chem Rev. 2011 Jun 8;111(6):3828-57
pubmed: 21648956
Nanoscale. 2015 Feb 7;7(5):1934-43
pubmed: 25530122
ACS Appl Mater Interfaces. 2018 Jan 10;10(1):290-295
pubmed: 29220574
Adv Biosyst. 2017 Sep;1(9):e1700096
pubmed: 32646188
Nanoscale. 2018 Aug 30;10(34):16094-16101
pubmed: 30109878
Biosens Bioelectron. 2014 Sep 15;59:208-15
pubmed: 24727607
ACS Appl Mater Interfaces. 2018 May 30;10(21):18380-18389
pubmed: 29737825
Chem Soc Rev. 2017 Jul 3;46(13):3866-3885
pubmed: 28447698
J Colloid Interface Sci. 2013 Nov 1;409:59-65
pubmed: 23978290
Anal Bioanal Chem. 2010 Feb;396(3):1127-34
pubmed: 20012901
ACS Nano. 2015 Mar 24;9(3):2783-91
pubmed: 25665929
Chem Rev. 2008 Feb;108(2):494-521
pubmed: 18229956
Materials (Basel). 2017 Nov 28;10(12):
pubmed: 29182585

Auteurs

Andreea Campu (A)

Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.

Laurentiu Susu (L)

Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.

Filip Orzan (F)

Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.

Dana Maniu (D)

Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania.

Ana Maria Craciun (AM)

Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.

Adriana Vulpoi (A)

Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.

Lucian Roiban (L)

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, MATEIS, UMR, CNRS, Villeurbanne, France.

Monica Focsan (M)

Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.

Simion Astilean (S)

Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.
Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania.

Classifications MeSH