A nanofluidic ion regulation membrane with aligned cellulose nanofibers.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
11
06
2018
accepted:
11
01
2019
entrez:
26
2
2019
pubmed:
26
2
2019
medline:
26
2
2019
Statut:
epublish
Résumé
The advancement of nanofluidic applications will require the identification of materials with high-conductivity nanoscale channels that can be readily obtained at massive scale. Inspired by the transpiration in mesostructured trees, we report a nanofluidic membrane consisting of densely packed cellulose nanofibers directly derived from wood. Numerous nanochannels are produced among an expansive array of one-dimensional cellulose nanofibers. The abundant functional groups of cellulose enable facile tuning of the surface charge density via chemical modification. The nanofiber-nanofiber spacing can also be tuned from ~2 to ~20 nm by structural engineering. The surface-charge-governed ionic transport region shows a high ionic conductivity plateau of ~2 mS cm
Identifiants
pubmed: 30801009
doi: 10.1126/sciadv.aau4238
pii: aau4238
pmc: PMC6386557
doi:
Types de publication
Journal Article
Langues
eng
Pagination
eaau4238Références
Nature. 2006 Jul 27;442(7101):368-73
pubmed: 16871203
Nano Lett. 2007 Mar;7(3):547-51
pubmed: 17311461
Nat Mater. 2008 Apr;7(4):303-7
pubmed: 18297076
Nat Nanotechnol. 2008 Feb;3(2):73-4
pubmed: 18654462
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19606-11
pubmed: 19064929
Nat Nanotechnol. 2009 Nov;4(11):713-20
pubmed: 19898499
Chem Soc Rev. 2010 Mar;39(3):923-38
pubmed: 20179815
Chem Rev. 2010 Jun 9;110(6):3479-500
pubmed: 20201500
Nat Nanotechnol. 2010 Apr;5(4):297-301
pubmed: 20305644
Science. 2010 Sep 10;329(5997):1320-4
pubmed: 20829480
Nanoscale. 2011 Jan;3(1):71-85
pubmed: 20957280
Nat Nanotechnol. 2010 Dec;5(12):848-52
pubmed: 21113159
Nat Nanotechnol. 2011 Jun 26;6(7):439-45
pubmed: 21706026
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11504-9
pubmed: 22711805
J Am Chem Soc. 2012 Oct 10;134(40):16528-31
pubmed: 22998077
Nature. 2013 Feb 28;494(7438):455-8
pubmed: 23446417
Biomicrofluidics. 2013 Mar;7(2):26501
pubmed: 23573176
Chem Commun (Camb). 2014 May 7;50(35):4596-9
pubmed: 24668121
Nat Commun. 2014 Jun 02;5:4018
pubmed: 24887005
Lab Chip. 2014 Oct 21;14(20):4035-41
pubmed: 25144164
Nat Commun. 2015 May 26;6:7170
pubmed: 26006731
Nano Lett. 2015 Aug 12;15(8):5046-51
pubmed: 26101791
Nat Commun. 2015 Jul 13;6:7602
pubmed: 26165550
ACS Nano. 2015 Aug 25;9(8):8520-9
pubmed: 26190513
Nat Nanotechnol. 2015 Dec;10(12):1070-6
pubmed: 26389660
Science. 2016 Mar 25;351(6280):1395-6
pubmed: 27013715
Adv Mater. 2016 Jul;28(25):5054-63
pubmed: 27135652
Nature. 2016 Aug 11;536(7615):197-200
pubmed: 27409806
Nat Nanotechnol. 2017 Jul;12(6):546-550
pubmed: 28369049
J Am Chem Soc. 2017 May 10;139(18):6314-6320
pubmed: 28418247
Sci Adv. 2018 Mar 09;4(3):eaar3724
pubmed: 29536048