Mechanism Underlying Heat Stability of the Rice Endosperm Cytosolic ADP-Glucose Pyrophosphorylase.

3-PGA AGPase heat stability molecular dynamics simulation reductive activation rice endosperm starch synthesis

Journal

Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200

Informations de publication

Date de publication:
2019
Historique:
received: 19 09 2018
accepted: 17 01 2019
entrez: 27 2 2019
pubmed: 26 2 2019
medline: 26 2 2019
Statut: epublish

Résumé

Rice grains accumulate starch as their major storage reserve whose biosynthesis is sensitive to heat. ADP-glucose pyrophosphorylase (AGPase) is among the starch biosynthetic enzymes severely affected by heat stress during seed maturation. To increase the heat tolerance of the rice enzyme, we engineered two dominant AGPase subunits expressed in developing endosperm, the large (L2) and small (S2b) subunits of the cytosol-specific AGPase. Bacterial expression of the rice S2b with the rice L2, potato tuber LS (pLS), or with the mosaic rice-potato large subunits, L2-pLS and pLS-L2, produced heat-sensitive recombinant enzymes, which retained less than 10% of their enzyme activities after 5 min incubation at 55°C. However, assembly of the rice L2 with the potato tuber SS (pSS) showed significantly increased heat stability comparable to the heat-stable potato pLS/pSS. The S2b assembled with the mosaic L2-pLS subunit showed 3-fold higher sensitivity to 3-PGA than L2/S2b, whereas the counterpart mosaic pLS-L2/S2b showed 225-fold lower sensitivity. Introduction of a QTC motif into S2b created an N-terminal disulfide linkage that was cleaved by dithiothreitol reduction. The QTC enzyme showed moderate heat stability but was not as stable as the potato AGPase. While the QTC AGPase exhibited approximately fourfold increase in 3-PGA sensitivity, its substrate affinities were largely unchanged. Random mutagenesis of S2b

Identifiants

pubmed: 30804963
doi: 10.3389/fpls.2019.00070
pmc: PMC6378277
doi:

Types de publication

Journal Article

Langues

eng

Pagination

70

Références

Biochem Biophys Res Commun. 1999 Apr 21;257(3):782-6
pubmed: 10208860
J Biol Chem. 2000 Jan 14;275(2):1315-20
pubmed: 10625679
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1724-9
pubmed: 11830676
Planta. 2003 Feb;216(4):656-64
pubmed: 12569408
Plant Physiol. 2003 Feb;131(2):684-96
pubmed: 12586892
Planta. 2003 Jul;217(3):449-56
pubmed: 14520572
Proteins. 2003;53 Suppl 6:534-41
pubmed: 14579343
Plant Physiol. 2004 May;135(1):137-44
pubmed: 15122037
Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):9971-5
pubmed: 15226500
Protein Expr Purif. 2004 Nov;38(1):99-107
pubmed: 15477087
EMBO J. 2005 Feb 23;24(4):694-704
pubmed: 15692569
FEBS Lett. 2005 Feb 14;579(5):983-90
pubmed: 15710379
Plant Physiol. 2005 Jul;138(3):1552-62
pubmed: 15951484
Plant Physiol. 2005 Dec;139(4):1625-34
pubmed: 16299180
Phytochemistry. 2007 Feb;68(4):464-77
pubmed: 17207506
Genetics. 1980 Aug;95(4):961-70
pubmed: 17249055
Plant Mol Biol. 2007 Nov;65(4):531-46
pubmed: 17406793
Plant Cell. 2007 May;19(5):1458-72
pubmed: 17496118
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10
pubmed: 17517781
Science. 1992 Oct 9;258(5080):287-92
pubmed: 17835129
Plant Physiol. 2008 Jan;146(1):289-99
pubmed: 18024561
J Biol Chem. 2008 Mar 14;283(11):6640-7
pubmed: 18199755
Biophys J. 2008 Oct;95(8):3628-39
pubmed: 18641076
PLoS Comput Biol. 2009 Oct;5(10):e1000546
pubmed: 19876371
Arch Biochem Biophys. 2010 Mar 1;495(1):82-92
pubmed: 20045390
J Comput Chem. 2011 Aug;32(11):2359-68
pubmed: 21541964
Plant Sci. 2011 Sep;181(3):275-81
pubmed: 21763538
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W294-7
pubmed: 22649060
Bioinformatics. 2013 Apr 1;29(7):845-54
pubmed: 23407358
J Comput Chem. 2013 Sep 30;34(25):2135-45
pubmed: 23832629
Methods Mol Biol. 2014;1137:1-15
pubmed: 24573470
Plant Cell Physiol. 2014 Jun;55(6):1169-83
pubmed: 24747952
FEBS J. 2014 Nov;281(21):4951-63
pubmed: 25204204
J Sci Food Agric. 2015 Aug 30;95(11):2237-43
pubmed: 25284759
Planta. 2016 Apr;243(4):999-1009
pubmed: 26748915
PLoS One. 2017 Jan 23;12(1):e0170232
pubmed: 28114344
Annu Rev Microbiol. 1984;38:419-58
pubmed: 6093684
Plant Physiol. 1995 Sep;109(1):245-51
pubmed: 7480324
Mol Gen Genet. 1994 May 25;243(4):400-8
pubmed: 8202085
J Biol Chem. 1993 Jan 15;268(2):1081-6
pubmed: 8380404
Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5824-9
pubmed: 8650177
Methods Enzymol. 1997;277:396-404
pubmed: 9379925
Biotechnol Annu Rev. 1996;2:259-79
pubmed: 9704099
Plant Physiol. 1998 Sep;118(1):265-74
pubmed: 9733546
J Biol Chem. 1998 Sep 25;273(39):25045-52
pubmed: 9737961
Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13342-7
pubmed: 9789090

Auteurs

Seon-Kap Hwang (SK)

Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.

Salvinder Singh (S)

Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India.

Jitendra Maharana (J)

Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India.

Samhita Kalita (S)

Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India.

Aytug Tuncel (A)

Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.

Tanmayee Rath (T)

Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India.

Debashish Panda (D)

Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India.

Mahendra Kumar Modi (MK)

Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India.

Thomas W Okita (TW)

Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.

Classifications MeSH