Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 02 2019
28 02 2019
Historique:
received:
25
07
2018
accepted:
10
01
2019
entrez:
1
3
2019
pubmed:
1
3
2019
medline:
1
3
2019
Statut:
epublish
Résumé
Amplification in toughness and balance with stiffness and strength are fundamental characteristics of biological structural composites, and a long sought-after objective for engineering design. Nature achieves these properties through a combination of multiscale key features. Yet, emulating all these features into synthetic de novo materials is rather challenging. Here, we fine-tune manual lamination, to implement a newly designed bone-inspired structure into fiber-reinforced composites. An integrated approach, combining numerical simulations, ad hoc manufacturing techniques, and testing, yields a novel composite with enhanced fracture toughness and balance with stiffness and strength, offering an optimal lightweight material solution with better performance than conventional materials such as metals and alloys. The results also show how the new design significantly boosts the fracture toughness compared to a classic laminated composite, made of the same building blocks, also offering an optimal tradeoff with stiffness and strength. The predominant mechanism, responsible for the enhancement of fracture toughness in the new material, is the continuous deviation of the crack from a straight path, promoting large energy dissipation and preventing a catastrophic failure. The new insights resulting from this study can guide the design of de novo fiber-reinforced composites toward better mechanical performance to reach the level of synergy of their natural counterparts.
Identifiants
pubmed: 30816162
doi: 10.1038/s41598-019-39030-7
pii: 10.1038/s41598-019-39030-7
pmc: PMC6395722
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3142Références
Sci Rep. 2015 Jun 08;5:11116
pubmed: 26054045
Adv Mater. 2015 Oct 7;27(37):5455-76
pubmed: 26305858
J Biomech. 2013 Jan 4;46(1):31-5
pubmed: 23084783
Science. 2017 Mar 10;355(6329):1055-1057
pubmed: 28280201
J Mech Behav Biomed Mater. 2009 Dec;2(6):596-602
pubmed: 19716103
Biomaterials. 1997 Oct;18(20):1325-30
pubmed: 9363331
Adv Mater. 2016 Dec;28(45):10061-10067
pubmed: 27690374
J Musculoskelet Neuronal Interact. 2011 Dec;11(4):270-85
pubmed: 22130136
Acta Biomater. 2011 Aug;7(8):3170-7
pubmed: 21571104
Biomaterials. 2014 Jul;35(21):5472-81
pubmed: 24731707
Bioinspir Biomim. 2015 Jul 09;10(4):046010
pubmed: 26158322
Science. 2008 Feb 22;319(5866):1053-4
pubmed: 18292331
Nat Mater. 2006 Jun;5(6):457-62
pubmed: 16680146
J Biomech Eng. 2016 Feb;138(2):021006
pubmed: 26747791
Nat Commun. 2011 Feb 01;2:173
pubmed: 21285951
Nat Mater. 2008 Aug;7(8):672-7
pubmed: 18587403
Biomaterials. 2009 Oct;30(29):5877-84
pubmed: 19573911
Science. 2006 Jan 27;311(5760):515-8
pubmed: 16439659
J Mech Behav Biomed Mater. 2017 Dec;76:135-144
pubmed: 28822737
Soft Matter. 2014 Jul 7;10(25):4436-42
pubmed: 24700202
Science. 2008 Dec 5;322(5907):1516-20
pubmed: 19056979
Nat Mater. 2015 Jan;14(1):23-36
pubmed: 25344782
Adv Mater. 2016 Jan 6;28(1):50-6
pubmed: 26554760
Acta Biomater. 2013 Feb;9(2):5273-9
pubmed: 22940125
J R Soc Interface. 2015 Jan 6;12(102):20140855
pubmed: 25551150
Nat Mater. 2003 Jun;2(6):413-8
pubmed: 12764359
Nat Commun. 2015 Oct 23;6:8641
pubmed: 26494282
Mater Sci Eng C Mater Biol Appl. 2016 May;62:361-7
pubmed: 26952434
Anat Rec A Discov Mol Cell Evol Biol. 2005 Sep;286(1):781-803
pubmed: 16037990
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Nat Mater. 2014 May;13(5):508-14
pubmed: 24658117