Postural respiratory-related cortical activation and rostral fluid shift in awake healthy humans.
control of breathing
fluid displacement
posture
Journal
Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
received:
11
11
2018
accepted:
27
02
2019
pubmed:
2
3
2019
medline:
25
7
2020
entrez:
2
3
2019
Statut:
ppublish
Résumé
What is the central question of this study? Moving to supine induces upper airway modifications and a fluid shift to the neck, which represent inspiratory load that predisposes to upper airway collapse. Is there cortical participation in the response to the load induced by transition to a supine posture in awake healthy subjects? What is the main finding and its importance? Moving to supine induces transient cortical activation in awake healthy subjects, with greater fluid shift, supporting possible cortical participation in the response to upper airway load induced by transition to a supine posture. Our findings open new perspectives in the understanding of the pathogenesis of obstructive sleep apnoea. Moving from sitting upright to lying supine causes anatomical modifications and a fluid shift to the neck, which represent inspiratory loads that predispose to upper airway collapse. The pre-inspiratory potential (PIP) corresponds to the cortical activity observed during inspiratory load. In the sitting position during wakefulness, some obstructive sleep apnoea patients exhibit PIP, probably in relationship to upper airway abnormalities. The aim of this study was to investigate whether moving to the supine position induces respiratory-related cortical activation (PIP) in awake healthy subjects. The ECG was analysed to detect PIP, and EMG activity of the genioglossus muscle and ventilation were measured in the sitting position, immediately after moving to the supine position, and during application of leg positive pressure in the supine position to promote fluid shift, which was measured by bioelectrical impedance. Twenty-four subjects were included. From sitting to lying, PIP prevalence increased from 1/24 to 11/24 (P = 0.002), and ventilation decreased with no change in genioglossus activity. The fluid shift from sitting to supine was higher in the subjects exhibiting PIP while supine compared with the subjects without PIP [median (25th; 75th centiles) 440 (430; 520) versus 320 (275; 385) ml, P = 0.018], without any other differences. From before to during leg positive pressure, PIP disappeared (P = 0.006). These results indicate that moving from sitting to lying induces transient respiratory-related cortical activity in awake healthy subjects with greater fluid shift, supporting possible cortical participation in the response to upper airway loading induced by moving from sitting upright to lying supine. This study offers new perspectives in the understanding of obstructive sleep apnoea pathogenesis.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
887-895Subventions
Organisme : Association pour le Développement et l'Organisation de la Recherche en Pneumologie et sur le Sommeil (non-profit organization)
Pays : International
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2019 The Authors. Experimental Physiology © 2019 The Physiological Society.