Posttreatment With the Fatty Acid Amide Hydrolase Inhibitor URB937 Ameliorates One-Lung Ventilation-Induced Lung Injury in a Rabbit Model.
Acute Lung Injury
/ diagnosis
Amidohydrolases
/ antagonists & inhibitors
Animals
Blood Gas Analysis
Cannabinoids
/ administration & dosage
Disease Models, Animal
Humans
Injections, Intraperitoneal
Lung
/ drug effects
Male
One-Lung Ventilation
/ adverse effects
Rabbits
Random Allocation
Respiratory Function Tests
Treatment Outcome
Ventilator-Induced Lung Injury
/ diagnosis
Acute lung injury
Arachidonoylethanolamine
Endocannabinoid
Fatty acid amide hydrolase
One-lung ventilation
Journal
The Journal of surgical research
ISSN: 1095-8673
Titre abrégé: J Surg Res
Pays: United States
ID NLM: 0376340
Informations de publication
Date de publication:
07 2019
07 2019
Historique:
received:
28
05
2018
revised:
19
11
2018
accepted:
04
01
2019
pubmed:
2
3
2019
medline:
25
1
2020
entrez:
2
3
2019
Statut:
ppublish
Résumé
One-lung ventilation (OLV)-induced inflammation is a risk factor for acute lung injury that is responsible for 20% of postoperative pulmonary complications after lung resection. Inflammation is an important trigger for acute lung injury. Fatty acid amide hydrolase (FAAH) is the major enzyme that degrades the endocannabinoid arachidonoylethanolamine (AEA), an important regulator of inflammation, and its downstream metabolites such as arachidonic acid (AA) are also involved in inflammation. Importantly, AEA is also found in lung parenchyma. However, it remains unclear whether pharmacological inhibition of FAAH inhibitor using compounds such as URB937 can attenuate OLV-induced lung injury. New Zealand white rabbits were anesthetized to establish a modified OLV-induced lung injury model. Twenty-four male rabbits were randomly divided into four groups (n = 6): TLV-S (2.5-h two-lung ventilation [TLV] + 1.5 mL/kg saline + 1-h TLV), OLV-S (2.5-h OLV + 1.5 mL/kg saline + 0.5-h OLV + 0.5-h TLV), U-OLV (1.5 mL/kg URB937 + 3.0-h OLV + 0.5-h TLV), and OLV-U (2.5-h OLV + 1.5 mL/kg URB937 + 0.5-h OLV + 0.5-h TLV). Arterial blood gases, lung wet/dry ratio, and lung injury score of the nonventilated lungs were measured. The levels of AEA, AA, prostaglandin I2 (PGI2), thromboxane A2 (TXA2), and leukotriene B4 (LTB4) in the nonventilated lung were also quantified. The arterial oxygenation index (PaO Posttreatment with the FAAH inhibitor URB937 attenuated OLV-induced lung injury in rabbits and was associated with increased AEA levels and decreased levels of AA and its downstream metabolites.
Sections du résumé
BACKGROUND
One-lung ventilation (OLV)-induced inflammation is a risk factor for acute lung injury that is responsible for 20% of postoperative pulmonary complications after lung resection. Inflammation is an important trigger for acute lung injury. Fatty acid amide hydrolase (FAAH) is the major enzyme that degrades the endocannabinoid arachidonoylethanolamine (AEA), an important regulator of inflammation, and its downstream metabolites such as arachidonic acid (AA) are also involved in inflammation. Importantly, AEA is also found in lung parenchyma. However, it remains unclear whether pharmacological inhibition of FAAH inhibitor using compounds such as URB937 can attenuate OLV-induced lung injury.
MATERIALS AND METHODS
New Zealand white rabbits were anesthetized to establish a modified OLV-induced lung injury model. Twenty-four male rabbits were randomly divided into four groups (n = 6): TLV-S (2.5-h two-lung ventilation [TLV] + 1.5 mL/kg saline + 1-h TLV), OLV-S (2.5-h OLV + 1.5 mL/kg saline + 0.5-h OLV + 0.5-h TLV), U-OLV (1.5 mL/kg URB937 + 3.0-h OLV + 0.5-h TLV), and OLV-U (2.5-h OLV + 1.5 mL/kg URB937 + 0.5-h OLV + 0.5-h TLV). Arterial blood gases, lung wet/dry ratio, and lung injury score of the nonventilated lungs were measured. The levels of AEA, AA, prostaglandin I2 (PGI2), thromboxane A2 (TXA2), and leukotriene B4 (LTB4) in the nonventilated lung were also quantified.
RESULTS
The arterial oxygenation index (PaO
CONCLUSIONS
Posttreatment with the FAAH inhibitor URB937 attenuated OLV-induced lung injury in rabbits and was associated with increased AEA levels and decreased levels of AA and its downstream metabolites.
Identifiants
pubmed: 30822695
pii: S0022-4804(19)30008-3
doi: 10.1016/j.jss.2019.01.009
pii:
doi:
Substances chimiques
Cannabinoids
0
URB937
0
Amidohydrolases
EC 3.5.-
fatty-acid amide hydrolase
EC 3.5.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
83-91Informations de copyright
Copyright © 2019 Elsevier Inc. All rights reserved.