Machine Learning Analyses on Data including Essential Oil Chemical Composition and In Vitro Experimental Antibiofilm Activities against
Staphylococcus species
antimicrobial
biofilm
essential oil
machine learning
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
03 Mar 2019
03 Mar 2019
Historique:
received:
10
02
2019
revised:
25
02
2019
accepted:
26
02
2019
entrez:
6
3
2019
pubmed:
6
3
2019
medline:
14
6
2019
Statut:
epublish
Résumé
Biofilm resistance to antimicrobials is a complex phenomenon, driven not only by genetic mutation induced resistance, but also by means of increased microbial cell density that supports horizontal gene transfer across cells. The prevention of biofilm formation and the treatment of existing biofilms is currently a difficult challenge; therefore, the discovery of new multi-targeted or combinatorial therapies is growing. The development of anti-biofilm agents is considered of major interest and represents a key strategy as non-biocidal molecules are highly valuable to avoid the rapid appearance of escape mutants. Among bacteria, staphylococci are predominant causes of biofilm-associated infections. Staphylococci, especially Staphylococcus aureus (S. aureus) is an extraordinarily versatile pathogen that can survive in hostile environmental conditions, colonize mucous membranes and skin, and can cause severe, non-purulent, toxin-mediated diseases or invasive pyogenic infections in humans. Staphylococcus epidermidis (S. epidermidis) has also emerged as an important opportunistic pathogen in infections associated with medical devices (such as urinary and intravascular catheters, orthopaedic implants, etc.), causing approximately from 30% to 43% of joint prosthesis infections. The scientific community is continuously looking for new agents endowed of anti-biofilm capabilities to fight S. aureus and S epidermidis infections. Interestingly, several reports indicated in vitro efficacy of non-biocidal essential oils (EOs) as promising treatment to reduce bacterial biofilm production and prevent the inducing of drug resistance. In this report were analyzed 89 EOs with the objective of investigating their ability to modulate bacterial biofilm production of different S. aureus and S. epidermidis strains. Results showed the assayed EOs to modulated the biofilm production with unpredictable results for each strain. In particular, many EOs acted mainly as biofilm inhibitors in the case of S. epidermidis strains, while for S. aureus strains, EOs induced either no effect or stimulate biofilm production. In order to elucidate the obtained experimental results, machine learning (ML) algorithms were applied to the EOs' chemical compositions and the determined associated anti-biofilm potencies. Statistically robust ML models were developed, and their analysis in term of feature importance and partial dependence plots led to indicating those chemical components mainly responsible for biofilm production, inhibition or stimulation for each studied strain, respectively.
Identifiants
pubmed: 30832446
pii: molecules24050890
doi: 10.3390/molecules24050890
pmc: PMC6429525
pii:
doi:
Substances chimiques
Anti-Bacterial Agents
0
Oils, Volatile
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Università degli Studi di Ferrara
ID : FAR2018
Déclaration de conflit d'intérêts
The authors declare no conflict of interest
Références
Bioinformatics. 2000 May;16(5):412-24
pubmed: 10871264
Clin Microbiol Rev. 2002 Apr;15(2):167-93
pubmed: 11932229
J Infect Dis. 2003 Sep 1;188(5):706-18
pubmed: 12934187
Laryngoscope. 2005 Aug;115(8):1469-72
pubmed: 16094127
Nat Rev Microbiol. 2006 Jan;4(1):36-45
pubmed: 16357859
J Med Microbiol. 2007 Apr;56(Pt 4):519-23
pubmed: 17374894
FEMS Immunol Med Microbiol. 2007 Oct;51(1):220-7
pubmed: 17854479
J Chem Inf Model. 2007 Nov-Dec;47(6):2345-57
pubmed: 17880194
Curr Top Microbiol Immunol. 2008;322:207-28
pubmed: 18453278
Infect Dis Clin North Am. 2009 Mar;23(1):73-98
pubmed: 19135917
J Hazard Mater. 2009 Jul 30;166(2-3):853-9
pubmed: 19144466
Appl Environ Microbiol. 2009 Nov;75(21):6850-5
pubmed: 19749058
Lett Appl Microbiol. 2010 Jan;50(1):30-5
pubmed: 19874481
PLoS One. 2013 Aug 09;8(8):e73376
pubmed: 23951352
Int J Microbiol. 2013;2013:760969
pubmed: 24222768
PLoS One. 2014 Apr 04;9(4):e94072
pubmed: 24705541
Trop Anim Health Prod. 2015 Mar;47(3):511-8
pubmed: 25547807
Nature. 2015 Feb 5;518(7537):125-6
pubmed: 25653001
Front Cell Infect Microbiol. 2015 Feb 17;5:14
pubmed: 25741476
Lett Appl Microbiol. 2015 Jul;61(1):58-62
pubmed: 25846244
Molecules. 2015 May 26;20(6):9640-55
pubmed: 26016551
Molecules. 2015 Jun 19;20(6):11357-72
pubmed: 26102069
J Med Microbiol. 2015 Aug;64(8):879-90
pubmed: 26294065
Front Microbiol. 2015 Dec 14;6:1333
pubmed: 26696962
Pharm Biol. 2016 Dec;54(12):3272-3279
pubmed: 27590861
Molecules. 2017 Jan 26;22(2):
pubmed: 28134788
Nat Prod Res. 2017 Oct;31(20):2387-2396
pubmed: 28361547
Nat Prod Res. 2018 Jun;32(11):1254-1259
pubmed: 28617136
Nat Prod Res. 2018 Jun;32(11):1299-1302
pubmed: 28627304
J Med Microbiol. 2017 Oct;66(10):1506-1515
pubmed: 28893370
Nat Rev Microbiol. 2017 Dec;15(12):740-755
pubmed: 28944770
J Clin Microbiol. 2018 Mar 26;56(4):
pubmed: 29367292
Molecules. 2018 Feb 23;23(2):null
pubmed: 29473844
Microb Pathog. 2018 May;118:74-80
pubmed: 29522803
Appl Microbiol Biotechnol. 2018 May;102(9):4171-4181
pubmed: 29536146
Arch Microbiol. 2018 Sep;200(7):1001-1007
pubmed: 29623386
Sensors (Basel). 2018 Jun 13;18(6):null
pubmed: 29899257
Front Vet Sci. 2018 Jul 03;5:146
pubmed: 30018971
Microb Pathog. 2018 Oct;123:304-313
pubmed: 30041003
Int J Food Microbiol. 2018 Dec 2;286:128-138
pubmed: 30099281
Carbohydr Polym. 2019 Feb 1;205:533-539
pubmed: 30446137
Infect Immun. 1996 Jan;64(1):277-82
pubmed: 8557351