LED-phototherapy does not induce oxidative DNA damage in hyperbilirubinemic Gunn rats.


Journal

Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714

Informations de publication

Date de publication:
06 2019
Historique:
received: 10 12 2018
accepted: 26 02 2019
revised: 18 02 2019
pubmed: 10 3 2019
medline: 6 5 2020
entrez: 10 3 2019
Statut: ppublish

Résumé

Phototherapy (PT) is the standard treatment of neonatal unconjugated hyperbilirubinemia. Fluorescent tube (FT)-emitted PT light is known to induce oxidative DNA damage in neonates. Nowadays, however, FTs have largely been replaced by light-emitting diodes (LEDs) for delivering PT. Until now, it is unknown whether LED-PT causes oxidative DNA damage. We aim to determine whether LED-PT induces oxidative DNA damage in hyperbilirubinemic rats. Adult Gunn rats, with genetically unconjugated hyperbilirubinemia, received LED-PT in the clinically relevant doses of 10 or 30 µW/cm LED-PT of 10 and 30 µW/cm Our results show that LED-PT does not induce oxidative DNA damage in hyperbilirubinemic Gunn rats either at clinically relevant or intensive dosages.

Sections du résumé

BACKGROUND
Phototherapy (PT) is the standard treatment of neonatal unconjugated hyperbilirubinemia. Fluorescent tube (FT)-emitted PT light is known to induce oxidative DNA damage in neonates. Nowadays, however, FTs have largely been replaced by light-emitting diodes (LEDs) for delivering PT. Until now, it is unknown whether LED-PT causes oxidative DNA damage. We aim to determine whether LED-PT induces oxidative DNA damage in hyperbilirubinemic rats.
METHODS
Adult Gunn rats, with genetically unconjugated hyperbilirubinemia, received LED-PT in the clinically relevant doses of 10 or 30 µW/cm
RESULTS
LED-PT of 10 and 30 µW/cm
CONCLUSIONS
Our results show that LED-PT does not induce oxidative DNA damage in hyperbilirubinemic Gunn rats either at clinically relevant or intensive dosages.

Identifiants

pubmed: 30851724
doi: 10.1038/s41390-019-0367-y
pii: 10.1038/s41390-019-0367-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1041-1047

Références

Dennery, P. A., Seidman, D. S. & Stevenson, D. K. Neonatal hyperbilirubinemia. N. Engl. J. Med. 344, 581–590 (2001).
doi: 10.1056/NEJM200102223440807
Maisels, M. J. & McDonagh, A. F. Phototherapy for neonatal jaundice. N. Engl. J. Med. 358, 920–928 (2008).
doi: 10.1056/NEJMct0708376
Brown, A. K., Kim, M. H., Wu, P. Y. & Bryla, D. A. Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics 75, 393–400 (1985).
pubmed: 3881731
Arnold, C., Pedroza, C. & Tyson, J. E. Phototherapy in ELBW newborns: does it work? Is it safe? Evid. Random. Clin. Trials 38, 452–464 (2014).
Dahlquist, G. & Kallen, B. Indications that phototherapy is a risk factor for insulin-dependent diabetes. Diabetes Care 26, 247–248 (2003).
doi: 10.2337/diacare.26.1.247-a
Maimburg, R. D., Olsen, J. & Sun, Y. Neonatal hyperbilirubinemia and the risk of febrile seizures and childhood epilepsy. Epilepsy Res. 124, 67–72 (2016).
doi: 10.1016/j.eplepsyres.2016.05.004
Wickremasinghe, A. C., Kuzniewicz, M. W., Grimes, B. A., McCulloch, C. E. & Newman, T. B. Neonatal phototherapy and infantile cancer. Pediatrics https://doi.org/10.1542/peds.2015-1353 (2016).
doi: 10.1542/peds.2015-1353
Torres-Cuevas, I., Parra-Llorca, A. & Sánchez-Illana, A. Oxygen and oxidative stress in the perinatal period. Redox Biol. 12, 674–681 (2017).
doi: 10.1016/j.redox.2017.03.011
Davis, J. M. & Auten, R. L. Maturation of the antioxidant system and the effects on preterm birth. Semin. Fetal Neonatal Med. 15, 191–195 (2010).
doi: 10.1016/j.siny.2010.04.001
Stocker, R. Antioxidant activities of bile pigments. Antioxid. Redox Signal 6, 841–849 (2004).
pubmed: 15345144
Fujiwara, R., Nguyen, N., Chen, S. & Tukey, R. H. Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc. Natl. Acad. Sci. USA 107, 5024–5029 (2010).
doi: 10.1073/pnas.0913290107
Bortolussi, G. et al. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo in mice. Dis. Model Mech. 7, 1057–1068 (2014).
doi: 10.1242/dmm.016535
Barateiro, A. et al. Reduced myelination and increased glia reactivity resulting from severe neonatal hyperbilirubinemia. Mol. Pharmacol. 89, 84–93 (2016).
doi: 10.1124/mol.115.098228
Rawat, V., Bortolussi, G., Gazzin, S., Tiribelli, C. & Muro, A. F. Bilirubin-induced oxidative stress leads to DNA damage in the cerebellum of hyperbilirubinemic neonatal mice and activates DNA double-strand break repair pathways in human cells. Oxid. Med. Cell. Longev. 1801243, 11 (2018).
Gathwala, G. & Sharma, S. Phototherapy induces oxidative stress in premature neonates. Indian J. Gastroenterol. 21, 153–154 (2002).
pubmed: 12385544
Tatli, M. M., Minnet, C., Kocyigit, A. & Karadag, A. Phototherapy increases DNA damage in lymphocytes of hyperbilirubinemic neonates. Mutat. Res. 654, 93–95 (2008).
doi: 10.1016/j.mrgentox.2007.06.013
Yahia, S. et al. Influence of hyperbilirubinemia and phototherapy on markers of genotoxicity and apoptosis in full-term infants. Eur. J. Pediatr. 174, 459–464 (2015).
doi: 10.1007/s00431-014-2418-z
Donneborg, M., Vandborg, P., Hansen, B., Rodrigo-Domingo, M. & Ebbesen, F. Double versus single intensive phototherapy with LEDs in treatment of neonatal hyperbilirubinemia. J. Perinatol. 38, 154 (2018).
doi: 10.1038/jp.2017.167
Kawai, K., Li, Y. & Kasai, H. Accurate measurement of 8-OH-dG and 8-OH-Gua in mouse DNA, urine and serum: effects of X-ray irradiation. Genes Environ. 29, 107–114 (2007).
doi: 10.3123/jemsge.29.107
Horn, S., Barnard, S. & Rothkamm, K. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS ONE 6, e25113 (2011).
doi: 10.1371/journal.pone.0025113
Wu, L. L., Chiou, C., Chang, P. & Wu, J. T. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 339, 1–9 (2004).
doi: 10.1016/j.cccn.2003.09.010
Kuo, L. J. & Yang, L. X. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 22, 305–309 (2008).
pubmed: 18610740
Barolet, D. Light-emitting diodes (LEDs) in dermatology. Semin. Cutan. Med. Surg. 27, 227–238 (2008).
doi: 10.1016/j.sder.2008.08.003
Maisels, M., Kring, E. & DeRidder, J. Randomized controlled trial of light-emitting diode phototherapy. J. Perinatol. 27, 565 (2007).
doi: 10.1038/sj.jp.7211789
Kletkiewicz, H. et al. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats. J. Physiol. Pharmacol. 67, 287–299 (2016).
pubmed: 27226188
Nuzum-Keim, A. & Sontheimer, R. Ultraviolet light output of compact fluorescent lamps: comparison to conventional incandescent and halogen residential lighting sources. Lupus 18, 556–560 (2009).
doi: 10.1177/0961203309103052
Safari, S., Eshraghi Dehkordy, S., Kazemi, M., Dehghan, H. & Mahaki, B. Ultraviolet radiation emissions and illuminance in different brands of compact fluorescent lamps. Int. J. Photoenergy 2015, 504674 (2015).
Moseley, H. & Ferguson, J. The risk to normal and photosensitive individuals from exposure to light from compact fluorescent lamps. Photodermatol. Photoimmunol. Photomed. 27, 131–137 (2011).
doi: 10.1111/j.1600-0781.2011.00576.x
Vreman, H. J. et al. Light-emitting diodes: a novel light source for phototherapy. Pediatr. Res. 44, 804 (1998).
doi: 10.1203/00006450-199811000-00027
Demirel, G., Uras, N. & Celik, I. H. Comparison of total oxidant/antioxidant status in unconjugated hyperbilirubinemia of newborn before and after conventional and LED phototherapy: a prospective randomized controlled trial. Clin. Invest. Med. 33, 335–341 (2010).
doi: 10.25011/cim.v33i5.14359
Kale, Y., Aydemir, O. & Celik, Ü. Effects of phototherapy using different light sources on oxidant and antioxidant status of neonates with jaundice. Early Hum. Dev. 89, 957–960 (2013).
doi: 10.1016/j.earlhumdev.2013.09.013
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem 38, 1103–1111 (2005).
doi: 10.1016/j.clinbiochem.2005.08.008
Uchida, Y. et al. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the Gunn rat model. Early Hum. Dev. 91, 381–385 (2015).
doi: 10.1016/j.earlhumdev.2015.04.010
Wagner, K. H. et al. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. (Lond.) 129, 1 (2015).
doi: 10.1042/CS20140566
Bulmer, A. C., Blanchfield, J. T., Toth, I., Fassett, R. G. & Coombes, J. S. Improved resistance to serum oxidation in Gilbert’s syndrome: a mechanism for cardiovascular protection. Atherosclerosis 199, 390–396 (2008).
doi: 10.1016/j.atherosclerosis.2007.11.022
Brito, M. A., Brites, D. & Butterfield, D. A. A link between hyperbilirubinemia, oxidative stress and injury to neocortical synaptosomes. Brain Res. 1026, 33–43 (2004).
doi: 10.1016/j.brainres.2004.07.063
Kapitulnik, J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol. Pharmacol. 66, 773–779 (2004).
doi: 10.1124/mol.104.002832
Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239 (2000).
doi: 10.1038/35041687
Odell, G. B., Natzschka, J. C. & Storey, G. Bilirubin nephropathy in the Gunn strain of rat. Am. J. Physiol. 212, 931–938 (1967).
doi: 10.1152/ajplegacy.1967.212.4.931
Ebbesen, F., Hansen, T. W. & Maisels, M. J. Update on phototherapy in jaundiced neonates. Curr. Pediatr. Rev. 13, 176–180 (2017).
doi: 10.2174/1573396313666170718150056

Auteurs

Lori W E van der Schoor (LWE)

Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. l.w.e.van.der.schoor@umcg.nl.

Christian V Hulzebos (CV)

Division of Neonatology, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Martijn H van Faassen (MH)

Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Ido P Kema (IP)

Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Alain de Bruin (A)

Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

Rick Havinga (R)

Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Mirjam Koster (M)

Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Sameh A Youssef (SA)

Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

Laura Bongiovanni (L)

Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

Johan W Jonker (JW)

Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Henkjan J Verkade (HJ)

Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH