Default Mode Network Structural Integrity and Cerebellar Connectivity Predict Information Processing Speed Deficit in Multiple Sclerosis.

cerebellum connectomics default mode network (DMN) diffusion weighted imaging (DWI) magnetic resonance imaging (MRI) multiple sclerosis (MS) symbol digit modalities test (SDMT) tractography

Journal

Frontiers in cellular neuroscience
ISSN: 1662-5102
Titre abrégé: Front Cell Neurosci
Pays: Switzerland
ID NLM: 101477935

Informations de publication

Date de publication:
2019
Historique:
received: 02 07 2018
accepted: 17 01 2019
entrez: 12 3 2019
pubmed: 12 3 2019
medline: 12 3 2019
Statut: epublish

Résumé

Cognitive impairment affects about 50% of multiple sclerosis (MS) patients, but the mechanisms underlying this remain unclear. The default mode network (DMN) has been linked with cognition, but in MS its role is still poorly understood. Moreover, within an extended DMN network including the cerebellum (CBL-DMN), the contribution of cortico-cerebellar connectivity to MS cognitive performance remains unexplored. The present study investigated associations of DMN and CBL-DMN structural connectivity with cognitive processing speed in MS, in both cognitively impaired (CIMS) and cognitively preserved (CPMS) MS patients. 68 MS patients and 22 healthy controls (HCs) completed a symbol digit modalities test (SDMT) and had 3T brain magnetic resonance imaging (MRI) scans that included a diffusion weighted imaging protocol. DMN and CBL-DMN tracts were reconstructed with probabilistic tractography. These networks (DMN and CBL-DMN) and the cortico-cerebellar tracts alone were modeled using a graph theoretical approach with fractional anisotropy (FA) as the weighting factor. Brain parenchymal fraction (BPF) was also calculated. In CIMS SDMT scores strongly correlated with the FA-weighted global efficiency (GE) of the network [GE(CBL-DMN): ρ = 0.87,

Identifiants

pubmed: 30853896
doi: 10.3389/fncel.2019.00021
pmc: PMC6396736
doi:

Types de publication

Journal Article

Langues

eng

Pagination

21

Références

Neurology. 1999 May 12;52(8):1626-32
pubmed: 10331689
Neurology. 1999 Nov 10;53(8):1698-704
pubmed: 10563615
Clin Neuropsychol. 2002 Aug;16(3):381-97
pubmed: 12607150
Neurology. 2003 Jun 10;60(11):1793-8
pubmed: 12796533
Neuroimage. 2005 May 15;26(1):258-65
pubmed: 15862226
Brain. 2005 Nov;128(Pt 11):2705-12
pubmed: 16230320
AJNR Am J Neuroradiol. 2006 May;27(5):954-7
pubmed: 16687523
Nat Rev Neurosci. 2006 Jul;7(7):511-22
pubmed: 16791141
Neuroimage. 2006 Oct 15;33(1):127-38
pubmed: 16904911
Mult Scler. 2007 Jan;13(1):52-7
pubmed: 17294611
Neuroimage. 2007 May 1;35(4):1459-72
pubmed: 17379540
Neurology. 2007 Dec 4;69(23):2136-45
pubmed: 18056577
Ann N Y Acad Sci. 2008 Mar;1124:1-38
pubmed: 18400922
Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
pubmed: 18824195
Brain. 2009 Jan;132(Pt 1):239-49
pubmed: 18953055
Lancet Neurol. 2008 Dec;7(12):1139-51
pubmed: 19007738
Neuroimage. 2009 Feb 15;44(4):1397-403
pubmed: 19027076
Nat Rev Neurosci. 2009 Mar;10(3):186-98
pubmed: 19190637
Brain. 2009 Dec;132(Pt 12):3366-79
pubmed: 19439423
Neuroimage. 2009 May 15;46(1):39-46
pubmed: 19457380
Mult Scler. 2009 Jul;15(7):854-9
pubmed: 19542264
Annu Rev Neurosci. 2009;32:413-34
pubmed: 19555291
Mult Scler. 2009 Sep;15(9):1077-84
pubmed: 19556311
J Neurosci. 2009 Jul 1;29(26):8586-94
pubmed: 19571149
Cereb Cortex. 2009 Oct;19(10):2485-97
pubmed: 19592571
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
pubmed: 19620724
Neuroimage. 2010 Sep;52(3):1059-69
pubmed: 19819337
J Neuroimaging. 2011 Apr;21(2):e50-6
pubmed: 19888926
Brain. 2010 Feb;133(Pt 2):362-74
pubmed: 20008455
Cortex. 2010 Jul-Aug;46(7):831-44
pubmed: 20152963
Neurology. 1991 May;41(5):685-91
pubmed: 2027484
Brain. 2010 Jun;133(Pt 6):1612-21
pubmed: 20356855
Neurology. 2010 Apr 20;74(16):1252-9
pubmed: 20404306
J Clin Exp Neuropsychol. 2011 Jan;33(1):42-50
pubmed: 20552497
J Magn Reson Imaging. 2010 Jul;32(1):223-8
pubmed: 20575080
Neuroimage. 2010 Dec;53(4):1233-43
pubmed: 20643215
Neurology. 2010 Oct 5;75(14):1241-8
pubmed: 20921510
Mult Scler. 2011 Apr;17(4):411-22
pubmed: 21239414
Cereb Cortex. 2011 Nov;21(11):2565-77
pubmed: 21467209
Neuroimage. 2011 Aug 1;57(3):892-907
pubmed: 21605688
J Neurophysiol. 2011 Nov;106(5):2322-45
pubmed: 21795627
Trends Cogn Sci. 2011 Oct;15(10):483-506
pubmed: 21908230
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Brain. 2011 Dec;134(Pt 12):3672-86
pubmed: 22036960
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):19066-71
pubmed: 22065778
Cerebellum. 2012 Sep;11(3):777-807
pubmed: 22370873
J Magn Reson Imaging. 2013 Jul;38(1):54-63
pubmed: 23238865
Exp Brain Res. 2013 Mar;225(3):399-407
pubmed: 23288324
Mult Scler. 2013 Aug;19(9):1161-8
pubmed: 23325589
Front Neural Circuits. 2013 Jan 10;6:116
pubmed: 23335884
Brain. 2013 Mar;136(Pt 3):696-709
pubmed: 23404337
Neurology. 2013 Mar 12;80(11):1025-32
pubmed: 23468546
Neuroimage. 2013 Oct 15;80:515-26
pubmed: 23623973
Cerebellum. 2014 Feb;13(1):151-77
pubmed: 23996631
Neuroimage. 2014 Jul 1;94:385-395
pubmed: 24361662
PLoS One. 2014 Jan 22;9(1):e86916
pubmed: 24466290
Mult Scler. 2014 Oct;20(11):1453-63
pubmed: 24619937
Hum Brain Mapp. 2014 Sep;35(9):4706-17
pubmed: 24687771
Mult Scler Int. 2014;2014:975803
pubmed: 24795824
Eur J Neurol. 2014 Sep;21(9):1219-25, e71-2
pubmed: 24850580
PLoS One. 2014 Jul 07;9(7):e101198
pubmed: 24999807
Brain Struct Funct. 2015 Nov;220(6):3369-84
pubmed: 25134682
J Neurol. 2015 Jan;262(1):91-100
pubmed: 25308631
Hum Brain Mapp. 2015 Apr;36(4):1609-19
pubmed: 25421928
Cerebellum. 2015 Jun;14(3):364-74
pubmed: 25578034
Mult Scler. 2016 Jan;22(1):73-84
pubmed: 25921041
Front Neurol. 2015 Apr 14;6:82
pubmed: 25926813
Neurology. 2015 Sep 29;85(13):1115-22
pubmed: 26320199
Sci Rep. 2016 Jul 12;6:29383
pubmed: 27403924
Eur J Neurol. 2017 Jan;24(1):27-36
pubmed: 27633185
J Neurol Neurosurg Psychiatry. 2017 Feb;88(2):146-151
pubmed: 27789541
Neuroimage Clin. 2016 Dec 05;13:288-296
pubmed: 28050344
Mult Scler. 2017 Apr;23(5):721-733
pubmed: 28206827
Trends Cogn Sci. 2017 May;21(5):313-332
pubmed: 28385461
PLoS One. 2017 Aug 8;12(8):e0182479
pubmed: 28792528
Sci Rep. 2017 Oct 9;7(1):12841
pubmed: 28993670
Brain. 2018 Jan 1;141(1):37-47
pubmed: 29053771
NMR Biomed. 2019 Apr;32(4):e3888
pubmed: 29350435
Front Neurol. 2018 Aug 20;9:690
pubmed: 30177910
Front Cell Neurosci. 2018 Oct 01;12:331
pubmed: 30327590
Acta Psychiatr Scand. 1983 Jun;67(6):361-70
pubmed: 6880820

Auteurs

Giovanni Savini (G)

Department of Physics, University of Milan, Milan, Italy.

Matteo Pardini (M)

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.
Ospedale Policlinico S. Martino, Genoa, Italy.

Gloria Castellazzi (G)

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.
NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.

Alessandro Lascialfari (A)

Department of Physics, University of Milan, Milan, Italy.

Declan Chard (D)

NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.
National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, United Kingdom.

Egidio D'Angelo (E)

Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.

Claudia A M Gandini Wheeler-Kingshott (CAM)

NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy.

Classifications MeSH