Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis.


Journal

Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035

Informations de publication

Date de publication:
2019
Historique:
received: 03 01 2019
revised: 08 02 2019
accepted: 13 02 2019
entrez: 12 3 2019
pubmed: 12 3 2019
medline: 12 3 2019
Statut: epublish

Résumé

Heart failure is a worldwide leading cause of death. Diet and obesity are particularly of high concern in heart disease etiology. Gravely, altered nutrition during developmental windows of vulnerability can have long-term impact on heart health; however, the underlying mechanisms are poorly understood. In the understanding of the initiation of chronic diseases related to developmental exposure to environmental challenges, deregulations in epigenetic mechanisms including micro-RNAs have been proposed as key events. In this context, we aimed at delineating the role of micro-RNAs in the programming of cardiac alterations induced by early developmental exposure to nutritional imbalance. To reach our aim, we developed a human relevant model of developmental exposure to nutritional imbalance by maternally exposing rat to high-fat diet during gestation and lactation. In this model, offspring exposed to maternal high-fat diet developed cardiac hypertrophy and increased extracellular matrix depot compared to those exposed to chow diet. Microarray approach performed on cardiac tissue allowed the identification of a micro-RNA subset which was down-regulated in high-fat diet-exposed animals and which were predicted to regulate transforming growth factor-beta (TGFβ)-mediated remodeling. As indicated by in vitro approaches and gene expression measurement in the heart of our animals, decrease in DiGeorge critical region 8 (DGCR8) expression, involved in micro-RNA biogenesis, seems to be a critical point in the alterations of the micro-RNA profile and the TGFβ-mediated remodeling induced by maternal exposure to high-fat diet. Finally, increasing DGCR8 activity and/or expression through hemin treatment in vitro revealed its potential in the rescue of the pro-fibrotic phenotype in cardiomyocytes driven by DGCR8 decrease. These findings suggest that cardiac alterations induced by maternal exposure to high-fat diet is related to abnormalities in TGFβ pathway and associated with down-regulated micro-RNA processing. Our study highlighted DGCR8 as a potential therapeutic target for heart diseases related to early exposure to dietary challenge.

Identifiants

pubmed: 30854230
doi: 10.1038/s41420-019-0153-y
pii: 153
pmc: PMC6397280
doi:

Types de publication

Journal Article

Langues

eng

Pagination

71

Déclaration de conflit d'intérêts

The authors declare that they have no conflict of interest.

Références

Genet Couns. 1999;10(1):25-33
pubmed: 10191426
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12283-8
pubmed: 11593045
Biochem Biophys Res Commun. 2003 Apr 25;304(1):184-90
pubmed: 12705904
Genes Dev. 2003 Dec 15;17(24):3011-6
pubmed: 14681208
Genes Dev. 2004 Dec 15;18(24):3016-27
pubmed: 15574589
Genes Dev. 2005 Dec 15;19(24):2979-90
pubmed: 16357216
Science. 2006 Apr 7;312(5770):117-21
pubmed: 16601194
Nat Struct Mol Biol. 2007 Jan;14(1):23-9
pubmed: 17159994
Cell Cycle. 2007 Jun 15;6(12):1426-31
pubmed: 17582223
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2111-6
pubmed: 18256189
Toxicol Sci. 2008 Jun;103(2):228-40
pubmed: 18281715
Nat Genet. 2008 Jun;40(6):751-60
pubmed: 18469815
Nutr Rev. 2008 Aug;66(8):477-82
pubmed: 18667010
J Nutr. 2008 Sep;138(9):1622-7
pubmed: 18716160
Biol Reprod. 2008 Dec;79(6):1030-7
pubmed: 18716288
Circulation. 2008 Oct 7;118(15):1567-76
pubmed: 18809798
FASEB J. 2009 Mar;23(3):806-12
pubmed: 18952709
Genome Res. 2009 Jan;19(1):92-105
pubmed: 18955434
RNA. 2009 Mar;15(3):493-501
pubmed: 19176604
Circ Res. 2009 Sep 11;105(6):585-94
pubmed: 19679836
Mol Psychiatry. 2010 Dec;15(12):1176-89
pubmed: 19721432
Nat Rev Neurosci. 2010 Jun;11(6):402-16
pubmed: 20485365
J Mol Cell Cardiol. 2011 Oct;51(4):600-6
pubmed: 21059352
Cardiovasc Res. 2011 Jul 15;91(2):320-9
pubmed: 21406596
J Biol Chem. 2011 May 13;286(19):16716-25
pubmed: 21454614
Mol Cell Endocrinol. 2011 Jun 6;339(1-2):180-9
pubmed: 21550381
Lancet. 2011 May 21;377(9779):1760-9
pubmed: 21571362
EMBO Rep. 2012 Feb 01;13(2):142-9
pubmed: 22222205
Ageing Res Rev. 2012 Sep;11(4):491-500
pubmed: 22306790
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1919-24
pubmed: 22308374
Protein Sci. 2012 Jun;21(6):797-808
pubmed: 22434730
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W498-504
pubmed: 22649059
PLoS One. 2013 May 31;8(5):e66282
pubmed: 23741528
Physiol Genomics. 2013 Oct 1;45(19):889-900
pubmed: 23922128
BMJ. 2013 Aug 13;347:f4539
pubmed: 23943697
Cell Rep. 2013 Nov 27;5(4):1070-81
pubmed: 24239349
J Clin Invest. 2014 Jan;124(1):448-60
pubmed: 24355923
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1861-6
pubmed: 24449907
Mutat Res Genet Toxicol Environ Mutagen. 2014 Apr;764-765:46-57
pubmed: 24486656
Endocrinology. 2014 Oct;155(10):3970-80
pubmed: 25051449
Mol Cell. 2015 Feb 5;57(3):397-407
pubmed: 25557550
BMC Nephrol. 2015 Apr 14;16:55
pubmed: 25881298
Chem Biol. 2015 Jun 18;22(6):793-802
pubmed: 26091172
Epigenomics. 2016 Nov;8(11):1459-1479
pubmed: 27762633
Microrna. 2017;6(1):2-16
pubmed: 27928946
Int J Mol Med. 2017 Aug;40(2):411-417
pubmed: 28627599
Card Fail Rev. 2017 Apr;3(1):7-11
pubmed: 28785469
Clin Chem. 2018 Jan;64(1):99-107
pubmed: 29158251
Cardiovasc Pathol. 2018 Jan - Feb;32:44-49
pubmed: 29198452
Nutr Metab Cardiovasc Dis. 2018 Jun;28(6):600-609
pubmed: 29691147
Nucleic Acids Res. 2018 Jun 20;46(11):5726-5736
pubmed: 29750274
Nutr Metab Cardiovasc Dis. 2018 Sep;28(9):944-951
pubmed: 29752038
J Dev Orig Health Dis. 2018 Dec;9(6):615-631
pubmed: 29909803
Cell. 1993 Jul 2;73(7):1435-44
pubmed: 8391934

Auteurs

Benazir Siddeek (B)

1Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.

Claire Mauduit (C)

2INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, France.

Hassib Chehade (H)

1Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.

Guillaume Blin (G)

1Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.

Marjorie Liand (M)

1Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.

Mariapia Chindamo (M)

1Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.

Mohamed Benahmed (M)

2INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, France.

Umberto Simeoni (U)

1Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.

Classifications MeSH