Automated characterization of anthropomorphicity of prosthetic feet fitted to bone-anchored transtibial prosthesis.


Journal

IEEE transactions on bio-medical engineering
ISSN: 1558-2531
Titre abrégé: IEEE Trans Biomed Eng
Pays: United States
ID NLM: 0012737

Informations de publication

Date de publication:
13 Mar 2019
Historique:
entrez: 16 3 2019
pubmed: 16 3 2019
medline: 16 3 2019
Statut: aheadofprint

Résumé

This study describes differentiating prosthetic feet designs fitted to bone-anchored transtibial prostheses based on an automated characterization of ankle stiffness profile relying on direct loading measurements. The objectives were (A) to present a process characterizing stiffness using innovative macro, meso and micro analyses, (B) to present stiffness profiles for feet with and without anthropomorphic designs, where anthropomorphicity is defined as a similarity of the moment-angle dependency in prosthetic and in the anatomical ankle, (C) to determine sensitivity of characterization. Three participants walked consecutively with two instrumented bone-anchored prostheses including their own prosthetic feet and Free-Flow foot meeting the anthropomorphicity criterion by design. Angle of dorsiflexion was extracted from video footage. Bending moment was recorded using multi-axis transducer attached to osseointegrated fixation. The automated characterization of stiffness involved a 12-step process relying on data-based criterion. The meso analyses confirmed bilinear behavior of moment-angle curves with Index of Anthropomorphicity of -2.966±2.369 Nm/Deg and 2.681±1.089 Nm/Deg indicating a convex and concave shape of usual and Free-Flow feet without and with anthropomorphic designs, respectively. The proposed straightforward meso analysis of the stiffness was capable to report clinical meaningful differences sensitive to feet's anthropomorphicity. Results confirmed the benefits for clinicians to rely on direct loading measurement providing individualized complementary insight into impact of components. This work could assist the developments of standards and guidelines for manufacturing and safe fitting of components to growing population requiring transtibial prostheses with socket or direct skeletal attachment worldwide.

Identifiants

pubmed: 30872221
doi: 10.1109/TBME.2019.2904713
pmc: PMC6926161
mid: NIHMS1544253
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NICHD NIH HHS
ID : R43 HD038143
Pays : United States
Organisme : NICHD NIH HHS
ID : R43 HD057492
Pays : United States

Références

J Rehabil Res Dev. 2008;45(4):vii-xiv
pubmed: 18712634
IEEE Trans Neural Syst Rehabil Eng. 2015 May;23(3):423-30
pubmed: 25051557
J Orthop Res. 2017 May;35(5):1113-1122
pubmed: 27341064
Clin Biomech (Bristol, Avon). 2007 Jul;22(6):665-73
pubmed: 17400346
J Biomech. 2013 Apr 26;46(7):1343-50
pubmed: 23499228
Gait Posture. 2013 Apr;37(4):620-6
pubmed: 23177920
J Rehabil Res Dev. 2013;50(5):619-34
pubmed: 24013910
IEEE Trans Biomed Eng. 2017 Jun;64(6):1357-1368
pubmed: 28113221
Disabil Rehabil. 2017 Jun;39(11):1045-1058
pubmed: 27494092
Acta Orthop. 2015;86(6):740-4
pubmed: 26145721
J Biomed Mater Res A. 2013 Nov;101(11):3339-48
pubmed: 23554122
IEEE Trans Biomed Eng. 2014 Dec;61(12):2911-20
pubmed: 25014949
Gait Posture. 2010 Feb;31(2):223-8
pubmed: 19926285
IEEE Trans Biomed Eng. 2017 Dec;64(12):2949-2956
pubmed: 28410094
Med Eng Phys. 2009 Jun;31(5):595-600
pubmed: 19150253
J Rehabil Res Dev. 2013;50(10):1423-34
pubmed: 24699977
IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):411-9
pubmed: 21708509
Clin Biomech (Bristol, Avon). 2008 Dec;23(10):1243-50
pubmed: 18809231
Comput Methods Biomech Biomed Engin. 2014;17 Suppl 1:80-1
pubmed: 25074174
J Rehabil Res Dev. 2004 Jul;41(4):555-70
pubmed: 15558384
IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):138-48
pubmed: 24122571
J Biomech. 2012 Oct 11;45(15):2603-9
pubmed: 22975295
Prosthet Orthot Int. 2014 Jun;38(3):253-62
pubmed: 23921596
Gait Posture. 2009 Nov;30(4):560-2
pubmed: 19709886
IEEE Trans Rehabil Eng. 2000 Mar;8(1):156-9
pubmed: 10779119
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):679-685
pubmed: 28113632
JBJS Rev. 2017 Oct;5(10):e10
pubmed: 29087966
Prosthet Orthot Int. 2008 Mar;32(1):68-78
pubmed: 18330805
IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2418-2426
pubmed: 29220324
IEEE Trans Neural Syst Rehabil Eng. 2006 Sep;14(3):370-7
pubmed: 17009497
IEEE Trans Biomed Eng. 2013 Oct;60(10):2745-50
pubmed: 23708765
Br J Surg. 2018 Dec;105(13):1731-1741
pubmed: 30307036
Prosthet Orthot Int. 2011 Jun;35(2):140-9
pubmed: 21697197
J Prosthet Orthot. 2020 Oct;32(4):258-271
pubmed: 33013144
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):9-14
pubmed: 19211318
J Biomech Eng. 2013 Oct 1;135(10):104502-5
pubmed: 23897236
PLoS One. 2018 Aug 9;13(8):e0201821
pubmed: 30092081
Prosthet Orthot Int. 2010 Dec;34(4):472-87
pubmed: 20961183
Sci Rep. 2018 Mar 29;8(1):5354
pubmed: 29599517
Pharmacoecon Open. 2017 Dec;1(4):301-314
pubmed: 29441506
J Prosthet Orthot. 1995 Fall;7(4):114-123
pubmed: 27087762
J Biomed Mater Res A. 2017 Feb;105(2):578-589
pubmed: 27750392
Prosthet Orthot Int. 2012 Jun;36(2):203-16
pubmed: 22344316
IEEE Trans Neural Syst Rehabil Eng. 2007 Dec;15(4):552-9
pubmed: 18198713
IEEE Trans Biomed Eng. 1985 Apr;32(4):257-62
pubmed: 3838734
Med Eng Phys. 2008 Sep;30(7):825-33
pubmed: 17977050
Prosthet Orthot Int. 2017 Aug;41(4):393-401
pubmed: 27117014
J Biomech. 2014 Apr 11;47(6):1542-7
pubmed: 24612723
J Prosthet Orthot. 1997 Summer;9(3):113-122
pubmed: 27087763
Clin Biomech (Bristol, Avon). 2014 Jan;29(1):98-104
pubmed: 24238976
Prosthet Orthot Int. 1996 Dec;20(3):159-71
pubmed: 8985995
JBI Database System Rev Implement Rep. 2018 Jun;16(6):1286-1310
pubmed: 29894396

Auteurs

Classifications MeSH