Propofol/Remifentanil Anesthesia Might Not Alter the Middle Cerebral Artery Diameter by Digital Subtraction Angiography.
Adult
Analgesics, Opioid
/ therapeutic use
Anesthesia, General
Anesthetics, Intravenous
/ therapeutic use
Angiography, Digital Subtraction
Blood Flow Velocity
Cerebral Angiography
Cerebrovascular Circulation
Female
Hemodynamics
Humans
Male
Middle Aged
Middle Cerebral Artery
/ anatomy & histology
Organ Size
Propofol
/ therapeutic use
Radiology, Interventional
Remifentanil
/ therapeutic use
Retrospective Studies
Stents
Transverse Sinuses
Ultrasonography, Doppler, Transcranial
Cerebral blood flow
Digital subtraction angiography
General anesthesia
Middle cerebral artery
Transcranial Doppler
Journal
Neurocritical care
ISSN: 1556-0961
Titre abrégé: Neurocrit Care
Pays: United States
ID NLM: 101156086
Informations de publication
Date de publication:
10 2019
10 2019
Historique:
pubmed:
17
3
2019
medline:
9
7
2020
entrez:
17
3
2019
Statut:
ppublish
Résumé
Transcranial Doppler (TCD) of the middle cerebral artery (MCA) enables the measurement of the mean blood velocity (MCA In this observational study, we measured the MCA Across the two phases, we observed a decrease in the mean arterial blood pressure (from 84 ± 9 to 71 ± 6 mmHg; p < 0.001) and heart rate (76 ± 10 vs. 65 ± 8 beats/min; p < 0.001), and a concomitant decrease in the MCA Those results suggested that in this population, no significant changes in the MCA
Identifiants
pubmed: 30877554
doi: 10.1007/s12028-019-00699-3
pii: 10.1007/s12028-019-00699-3
doi:
Substances chimiques
Analgesics, Opioid
0
Anesthetics, Intravenous
0
Remifentanil
P10582JYYK
Propofol
YI7VU623SF
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
338-345Références
Smielewski P, Czosnyka M, Kirkpatrick P, McEroy H, Rutkowska H, Pickard JD. Assessment of cerebral autoregulation using carotid artery compression. Stroke. 1996;27(12):2197–203.
doi: 10.1161/01.STR.27.12.2197
Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol Bethesda Md 1985. 1997;82(4):1256–69.
Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98(6):1227–34.
doi: 10.3171/jns.2003.98.6.1227
Lanfranchi PA, Somers VK. Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R815–26.
doi: 10.1152/ajpregu.00051.2002
Donnelly J, Aries MJ, Czosnyka M. Further understanding of cerebral autoregulation at the bedside: possible implications for future therapy. Expert Rev Neurother. 2015;15(2):169–85.
doi: 10.1586/14737175.2015.996552
Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.
doi: 10.3171/jns.1982.57.6.0769
D’Andrea A, Conte M, Scarafile R, Riegler L, Cocchia R, Pezzullo E, et al. Transcranial Doppler ultrasound: Physical principles and principal applications in neurocritical care unit. J Cardiovasc Echogr. 2016;26(2):28.
doi: 10.4103/2211-4122.183746
Compton JS, Redmond S, Symon L. Cerebral blood velocity in subarachnoid haemorrhage: a transcranial Doppler study. J Neurol Neurosurg Psychiatry. 1987;50(11):1499–503.
doi: 10.1136/jnnp.50.11.1499
Cigada M, Marzorati S, Tredici S, Iapichino G. Cerebral CO
doi: 10.1007/s001340051239
Feri M, Ralli L, Felici M, Vanni D, Capria V. Transcranial Doppler and brain death diagnosis. Crit Care Med. 1994;22(7):1120–6.
doi: 10.1097/00003246-199407000-00012
Giller CA, Purdy P, Giller A, Batjer HH, Kopitnik T. Elevated transcranial Doppler ultrasound velocities following therapeutic arterial dilation. Stroke. 1995;26(1):123–7.
doi: 10.1161/01.STR.26.1.123
Brauer P, Kochs E, Werner C, Bloom M, Policare R, Pentheny S, et al. Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology. J Neurosurg Anesthesiol. 1998;10(2):80–5.
doi: 10.1097/00008506-199804000-00003
Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth. 2004;93(5):710–24.
doi: 10.1093/bja/aeh205
Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32(5):737–41 (discussion 741–742).
doi: 10.1227/00006123-199305000-00006
Verbree J, Bronzwaer A, van Buchem MA, Daemen M, van Lieshout JJ, van Osch M. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2017;37(8):2921–7.
doi: 10.1177/0271678X16679419
Conti A. Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: transcranial Doppler study under bispectral index monitoring. Br J Anaesth. 2006;97(3):333–9.
doi: 10.1093/bja/ael169
Purrucker JC, Renzland J, Uhlmann L, Bruckner T, Hacke W, Steiner T, et al. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa
doi: 10.1093/bja/aev070
Vandesteene A, Trempont V, Engelman E, Deloof T, Focroul M, Schoutens A, et al. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia. 1988;43(Suppl):42–3.
doi: 10.1111/j.1365-2044.1988.tb09067.x
Schregel W, Bredenkötter U, Sihle-Wissel M, Cunitz G. Transkranielle Dopplersonographie: effekte intravenöser Anästhetika bei neurochirurgischen Patienten. Ultraschall Med. 2008;16(02):60–4.
doi: 10.1055/s-2007-1003988
Nakamura K, Hatano Y, Hirakata H, Nishiwada M, Toda H, Mori K. Direct vasoconstrictor and vasodilator effects of propofol in isolated dog arteries. Br J Anaesth. 1992;68(2):193–7.
doi: 10.1093/bja/68.2.193
Gelb AW, Zhang C, Hamilton JT. Propofol induces dilation and inhibits constriction in guinea pig basilar arteries. Anesth Analg. 1996;83(3):472–6.
doi: 10.1213/00000539-199609000-00005
Turan N, Heider RA, Roy AK, Miller BA, Mullins ME, Barrow DL, et al. Current perspectives in imaging modalities for the assessment of unruptured intracranial aneurysms: a comparative analysis and review. World Neurosurg. 2018;113:280–92.
doi: 10.1016/j.wneu.2018.01.054
Vallée F, Passouant O, Le Gall A, Joachim J, Mateo J, Mebazaa A, et al. Norepinephrine reduces arterial compliance less than phenylephrine when treating general anesthesia-induced arterial hypotension. Acta Anaesthesiol Scand. 2017;61(6):590–600.
doi: 10.1111/aas.12905
Tarasów E, Abdulwahed Saleh Ali A, Lewszuk A, Walecki J. Measurements of the middle cerebral artery in digital subtraction angiography and MR angiography. Med Sci Monit Int Med J Exp Clin Res. 2007;13(Suppl 1):65–72.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl. 1986;1(8476):307–10.
doi: 10.1016/S0140-6736(86)90837-8
Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.
doi: 10.1037/0033-2909.86.2.420
Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8.
doi: 10.1161/01.STR.31.7.1672
Möller Petrun A, Kamenik M. Bispectral index-guided induction of general anaesthesia in patients undergoing major abdominal surgery using propofol or etomidate: a double-blind, randomized, clinical trial. Br J Anaesth. 2013;110(3):388–96.
doi: 10.1093/bja/aes416
Alkire MT, Haier RJ, Barker SJ, Shah NK, Wu JC, Kao YJ. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology. 1995;82(2):393–403 (discussion 27A).
doi: 10.1097/00000542-199502000-00010
Johnston AJ, Steiner LA, Chatfield DA, Coleman MR, Coles JP, Al-Rawi PG, et al. Effects of propofol on cerebral oxygenation and metabolism after head injury. Br J Anaesth. 2003;91(6):781–6.
doi: 10.1093/bja/aeg256
Harrison JM, Girling KJ, Mahajan RP. Effects of target-controlled infusion of propofol on the transient hyperaemic response and carbon dioxide reactivity in the middle cerebral artery. Br J Anaesth. 1999;83(6):839–44.
doi: 10.1093/bja/83.6.839
Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.
pubmed: 2363528
Ciobanu L, Reynaud O, Uhrig L, Jarraya B, Le Bihan D. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI. Chang AYW, editor. PLoS ONE. 2012;7(3):e32645.
doi: 10.1371/journal.pone.0032645
Kadoi Y, Saito S. Effects of adding remifentanil to propofol anesthesia on systemic hemodynamics, cardiac output, and middle cerebral artery flow velocity during electroconvulsive therapy: a pilot study. J ECT. 2015;31(2):98–100.
doi: 10.1097/YCT.0000000000000202
Lagace A, Karsli C, Luginbuehl I, Bissonnette B. The effect of remifentanil on cerebral blood flow velocity in children anesthetized with propofol1. Pediatr Anesth. 2004;14(10):861–5.
doi: 10.1111/j.1460-9592.2004.01323.x
Paris A, Scholz J, von Knobelsdorff G, Tonner PH, Esch JS. The effect of remifentanil on cerebral blood flow velocity. Anesth Analg. 1998;87(3):569–73.
pubmed: 9728830
Lenck S, Vallée F, Labeyrie M-A, Touitou V, Saint-Maurice J-P, Guillonnet A, et al. Stenting of the lateral sinus in idiopathic intracranial hypertension according to the type of stenosis. Neurosurgery. 2017;80(3):393–400.
doi: 10.1227/NEU.0000000000001261
Schregel W, Schaefermeyer H, Sihle-Wissel M, Klein R. Transcranial Doppler sonography during isoflurane/N
doi: 10.1007/BF03010001