Attosecond angular streaking and tunnelling time in atomic hydrogen.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
04 2019
Historique:
received: 26 07 2017
accepted: 07 01 2019
pubmed: 20 3 2019
medline: 20 3 2019
entrez: 20 3 2019
Statut: ppublish

Résumé

The tunnelling of a particle through a potential barrier is a key feature of quantum mechanics that goes to the core of wave-particle duality. The phenomenon has no counterpart in classical physics, and there are no well constructed dynamical observables that could be used to determine 'tunnelling times'. The resulting debate

Identifiants

pubmed: 30886392
doi: 10.1038/s41586-019-1028-3
pii: 10.1038/s41586-019-1028-3
doi:

Types de publication

Journal Article

Langues

eng

Pagination

75-77

Commentaires et corrections

Type : ErratumIn

Références

Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).
doi: 10.1103/PhysRev.98.145
Smith, F. T. Lifetime matrix in collision theory. Phys. Rev. 118, 349–356 (1960).
doi: 10.1103/PhysRev.118.349
Büttiker, M. & Landauer, R. Traversal time for tunneling. Phys. Rev. Lett. 49, 1739–1742 (1982).
doi: 10.1103/PhysRevLett.49.1739
Mandelstam, L. & Tamm, I. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. 9, 249–254 (1945).
Yamada, N. Speakable and unspeakable in the tunneling time problem. Phys. Rev. Lett. 83, 3350–3353 (1999).
doi: 10.1103/PhysRevLett.83.3350
Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
doi: 10.1038/35107000
Eckle, P. et al. Attosecond angular streaking. Nat. Phys. 4, 565–570 (2008).
doi: 10.1038/nphys982
Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).
doi: 10.1126/science.1163439
Pfeiffer, A. N. et al. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nat. Phys. 8, 76–80 (2012).
doi: 10.1038/nphys2125
Pfeiffer, A. N., Cirelli, C., Smolarski, M. & Keller, U. Recent attoclock measurements of strong field ionization. Chem. Phys. 414, 84–91 (2013).
doi: 10.1016/j.chemphys.2012.02.005
Camus, N. et al. Experimental evidence for quantum tunneling time. Phys. Rev. Lett. 119, 023201 (2017).
doi: 10.1103/PhysRevLett.119.023201
Landsman, A. S. et al. Ultrafast resolution of tunneling delay time. Optica 1, 343–349 (2014).
doi: 10.1364/OPTICA.1.000343
Kielpinski, D., Sang, R. & Litvinyuk, I. Benchmarking strong-field ionization with atomic hydrogen. J. Phys. At. Mol. Opt. Phys. 47, 204003 (2014).
doi: 10.1088/0953-4075/47/20/204003
Wallace, W. et al. Precise and accurate measurements of strong-field photoionization and a transferable laser intensity calibration standard. Phys. Rev. Lett. 117, 053001 (2016).
doi: 10.1103/PhysRevLett.117.053001
Khurmi, C. et al. Measuring laser carrier-envelope phase effects in the noble gases with an atomic hydrogen calibration standard. Phys. Rev. A 96, 013404 (2017).
doi: 10.1103/PhysRevA.96.013404
Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).
doi: 10.1016/S0370-1573(99)00109-X
Torlina, L. et al. Interpreting attoclock measurements of tunnelling times. Nat. Phys. 11, 503–508 (2015).
doi: 10.1038/nphys3340
Ni, H., Saalmann, U. & Rost, J.-M. Tunneling ionization time resolved by backpropagation. Phys. Rev. Lett. 117, 023002 (2016).
doi: 10.1103/PhysRevLett.117.023002
Zimmermann, T., Mishra, S., Doran, B. R., Gordon, D. F. & Landsman, A. S. Tunneling time and weak measurement in strong field ionization. Phys. Rev. Lett. 116, 233603 (2016).
doi: 10.1103/PhysRevLett.116.233603
Ni, H., Saalmann, U. & Rost, J.-M. Tunneling exit characteristics from classical backpropagation of an ionized electron wave packet. Phys. Rev. A 97, 013426 (2018).
doi: 10.1103/PhysRevA.97.013426
Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).
doi: 10.1103/PhysRevLett.71.1994
Kulander, K., Schafer, K. & Krause, J. in Super-Intense Laser–Atom Physics 95–110 (Plenum Press, New York, 1993).
Slevin, J. & Stirling, W. Radio frequency atomic hydrogen beam source. Rev. Sci. Instrum. 52, 1780–1782 (1981).
doi: 10.1063/1.1136497
Pullen, M. G. Above Threshold Ionisation of Atomic Hydrogen Using Few-Cycle Pulses. Thesis, Griffith Univ. (2011).
Nurhuda, M. & Faisal, F. H. Numerical solution of time-dependent Schrödinger equation for multiphoton processes: a matrix iterative method. Phys. Rev. A 60, 3125–3133 (1999).
doi: 10.1103/PhysRevA.60.3125
Douguet, N. et al. Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses. Phys. Rev. A 93, 033402 (2016).
doi: 10.1103/PhysRevA.93.033402
Ivanov, I. Evolution of the transverse photoelectron-momentum distribution for atomic ionization driven by a laser pulse with varying ellipticity. Phys. Rev. A 90, 013418 (2014).
doi: 10.1103/PhysRevA.90.013418
Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One-and Two-Electron Atoms (Springer, Berlin, 1957).
doi: 10.1007/978-3-662-12869-5
Sellin, I. Experiments on the production and extinction of the 2s state of the hydrogen atom. Phys. Rev. 136, A1245–A1253 (1964).
doi: 10.1103/PhysRev.136.A1245

Auteurs

U Satya Sainadh (US)

Australian Attosecond Science facility, Centre for Quantum Dynamics, Griffith University, Nathan, Queensland, Australia.

Han Xu (H)

Australian Attosecond Science facility, Centre for Quantum Dynamics, Griffith University, Nathan, Queensland, Australia. h.xu@griffith.edu.au.

Xiaoshan Wang (X)

School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China.

A Atia-Tul-Noor (A)

Australian Attosecond Science facility, Centre for Quantum Dynamics, Griffith University, Nathan, Queensland, Australia.

William C Wallace (WC)

Australian Attosecond Science facility, Centre for Quantum Dynamics, Griffith University, Nathan, Queensland, Australia.

Nicolas Douguet (N)

Department of Physics and Astronomy, Drake University, Des Moines, IA, USA.
Department of Physics, University of Central Florida, Orlando, FL, USA.

Alexander Bray (A)

Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory, Australia.

Igor Ivanov (I)

Centre for Relativistic Laser Science, Institute for Basic Science, Gwangju, South Korea.

Klaus Bartschat (K)

Department of Physics and Astronomy, Drake University, Des Moines, IA, USA.

Anatoli Kheifets (A)

Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory, Australia.

R T Sang (RT)

Australian Attosecond Science facility, Centre for Quantum Dynamics, Griffith University, Nathan, Queensland, Australia. r.sang@griffith.edu.au.

I V Litvinyuk (IV)

Australian Attosecond Science facility, Centre for Quantum Dynamics, Griffith University, Nathan, Queensland, Australia. i.litvinyuk@griffith.edu.au.

Classifications MeSH