Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
04 2019
04 2019
Historique:
received:
24
08
2018
accepted:
28
01
2019
pubmed:
20
3
2019
medline:
22
5
2019
entrez:
20
3
2019
Statut:
ppublish
Résumé
Neural organoids have the potential to improve our understanding of human brain development and neurological disorders. However, it remains to be seen whether these tissues can model circuit formation with functional neuronal output. Here we have adapted air-liquid interface culture to cerebral organoids, leading to improved neuronal survival and axon outgrowth. The resulting thick axon tracts display various morphologies, including long-range projection within and away from the organoid, growth-cone turning, and decussation. Single-cell RNA sequencing reveals various cortical neuronal identities, and retrograde tracing demonstrates tract morphologies that match proper molecular identities. These cultures exhibit active neuronal networks, and subcortical projecting tracts can innervate mouse spinal cord explants and evoke contractions of adjacent muscle in a manner dependent on intact organoid-derived innervating tracts. Overall, these results reveal a remarkable self-organization of corticofugal and callosal tracts with a functional output, providing new opportunities to examine relevant aspects of human CNS development and disease.
Identifiants
pubmed: 30886407
doi: 10.1038/s41593-019-0350-2
pii: 10.1038/s41593-019-0350-2
pmc: PMC6436729
mid: EMS81522
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
669-679Subventions
Organisme : Medical Research Council
ID : MC_UP_1201/9
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P008658/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1201/13
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1201/2
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_16036
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105184326
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_12009
Pays : United Kingdom
Références
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).
doi: 10.1038/nature12517
Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).
doi: 10.1073/pnas.1315710110
Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).
doi: 10.1038/nature22330
Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).
doi: 10.1038/nbt.3906
Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).
doi: 10.1038/nature22047
Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).
doi: 10.1038/nbt.4127
Gähwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A. & Thompson, S. M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477 (1997).
doi: 10.1016/S0166-2236(97)01122-3
Renner, M. et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017).
doi: 10.15252/embj.201694700
Bak, M. & Fraser, S. E. Axon fasciculation and differences in midline kinetics between pioneer and follower axons within commissural fascicles. Development 130, 4999–5008 (2003).
doi: 10.1242/dev.00713
Polleux, F. & Snider, W. Initiating and growing an axon. Cold Spring Harb. Perspect. Biol. 2, a001925 (2010).
doi: 10.1101/cshperspect.a001925
Piper, M. et al. Neuropilin 1-Sema signaling regulates crossing of cingulate pioneering axons during development of the corpus callosum. Cereb. Cortex 19(Suppl. 1), i11–i21 (2009).
doi: 10.1093/cercor/bhp027
Chédotal, A. & Richards, L. J. Wiring the brain: the biology of neuronal guidance. Cold Spring Harb. Perspect. Biol. 2, a001917 (2010).
doi: 10.1101/cshperspect.a001917
Shu, T. & Richards, L. J. Cortical axon guidance by the glial wedge during the development of the corpus callosum. J. Neurosci. 21, 2749–2758 (2001).
doi: 10.1523/JNEUROSCI.21-08-02749.2001
Keeble, T. R. et al. The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J. Neurosci. 26, 5840–5848 (2006).
doi: 10.1523/JNEUROSCI.1175-06.2006
Schroeter, M. S., Charlesworth, P., Kitzbichler, M. G., Paulsen, O. & Bullmore, E. T. Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J. Neurosci. 35, 5459–5470 (2015).
doi: 10.1523/JNEUROSCI.4259-14.2015
Cotterill, E., Charlesworth, P., Thomas, C. W., Paulsen, O. & Eglen, S. J. A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks. J. Neurophysiol. 116, 306–321 (2016).
doi: 10.1152/jn.00093.2016
Streit, J., Spenger, C. & Lüscher, H. R. An organotypic spinal cord–dorsal root ganglion–]skeletal muscle coculture of embryonic rat. II. functional evidence for the formation of spinal reflex arcs in vitro. Eur. J. Neurosci. 3, 1054–1068 (1991).
doi: 10.1111/j.1460-9568.1991.tb00042.x
Koh, T. H. & Eyre, J. A. Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch. Dis. Child. 63, 1347–1352 (1988).
doi: 10.1136/adc.63.11.1347
Daza, R. A. M., Englund, C. & Hevner, R. F. Organotypic slice culture of embryonic brain tissue. CSH Protoc. 2007, t4914 (2007).
Sorkin, R. et al. Compact self-wiring in cultured neural networks. J. Neural Eng. 3, 95–101 (2006).
doi: 10.1088/1741-2560/3/2/003
Gonzalez, C. et al. Modeling amyloid beta and tau pathology in human cerebral organoids. Mol. Psychiatry 23, 2363–2374 (2018).
doi: 10.1038/s41380-018-0229-8
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
doi: 10.1016/j.cell.2016.04.032
Rezakhaniha, R. et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11, 461–473 (2012).
doi: 10.1007/s10237-011-0325-z
Mátés, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).
doi: 10.1038/ng.343
Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Meth. Enzymol. 504, 183–200 (2012).
doi: 10.1016/B978-0-12-391857-4.00009-4
Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).
doi: 10.1038/nprot.2014.158
Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528 (2018).
doi: 10.1038/nature25980
Watanabe, M. et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 21, 517–532 (2017).
doi: 10.1016/j.celrep.2017.09.047
Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).
doi: 10.1016/j.cell.2015.09.004
Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).
doi: 10.1038/s41593-018-0079-3
Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).
doi: 10.1126/science.aaf1204
Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).
doi: 10.1073/pnas.1508055112
Cutts, C. S. & Eglen, S. J. Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves. J. Neurosci. 34, 14288–14303 (2014).
doi: 10.1523/JNEUROSCI.2767-14.2014